Thomas P Sakmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3753849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin. IScience, 2022, 25, 104060.	1.9	6
2	Getting to the heart of cannabis health risks. Cell, 2022, 185, 1623-1625.	13.5	3
3	Combined Inhibition of Gαq and MEK Enhances Therapeutic Efficacy in Uveal Melanoma. Clinical Cancer Research, 2021, 27, 1476-1490.	3.2	29
4	Purinergic Receptors Crosstalk with CCR5 to Amplify Ca2+ Signaling. Cellular and Molecular Neurobiology, 2021, 41, 1085-1101.	1.7	10
5	Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. Journal of Biological Chemistry, 2021, 296, 100163.	1.6	22
6	Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C. Biophysical Journal, 2021, 120, 2927-2942.	0.2	23
7	Archiving time series sewage samples as biological records of built environments. BMC Infectious Diseases, 2021, 21, 601.	1.3	3
8	DRUL for school: Opening Pre-K with safe, simple, sensitive saliva testing for SARS-CoV-2. PLoS ONE, 2021, 16, e0252949.	1.1	5
9	Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. Science Advances, 2021, 7, eabj7917.	4.7	15
10	Playing Tag with Your Favorite GPCR Using CRISPR. Cell Chemical Biology, 2020, 27, 642-644.	2.5	2
11	14-3-3 signal adaptor and scaffold proteins mediate GPCR trafficking. Scientific Reports, 2019, 9, 11156.	1.6	15
12	Dual Bioorthogonal Labeling of the Amyloid-β Protein Precursor Facilitates Simultaneous Visualization of the Protein and Its Cleavage Products. Journal of Alzheimer's Disease, 2019, 72, 537-548.	1.2	13
13	High-Affinity Binding of Chemokine Analogs that Display Ligand Bias at the HIV-1 Coreceptor CCR5. Biophysical Journal, 2019, 117, 903-919.	0.2	13
14	Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor. Journal of Biological Chemistry, 2019, 294, 17409-17420.	1.6	21
15	Multiplexed analysis of the secretin-like GPCR-RAMP interactome. Science Advances, 2019, 5, eaaw2778.	4.7	54
16	Conformationâ€specific antibodies against multiple amyloid protofibril species from a single amyloid immunogen. Journal of Cellular and Molecular Medicine, 2019, 23, 2103-2114.	1.6	11
17	Tracking Pore Hydration in Channelrhodopsin by Site-Directed Infrared-Active Azido Probes. Biochemistry, 2019, 58, 1275-1286.	1.2	8
18	Receptor Structures for a Caldron of Cannabinoids. Cell, 2019, 176, 409-411.	13.5	9

#	Article	IF	CITATIONS
19	Detection of Concordance between Transcriptional Levels of GPCRs and Receptor-Activity-Modifying Proteins. IScience, 2019, 11, 366-374.	1.9	11
20	Third-Party Capture of Elusive GPCR Dimers. Biophysical Journal, 2019, 116, 1-3.	0.2	18
21	Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 1081-1091.	1.2	44
22	Probing Antibody Binding Sites on G Protein-Coupled Receptors Using Genetically Encoded Photo-Activatable Cross-Linkers. Methods in Molecular Biology, 2018, 1785, 65-75.	0.4	1
23	DNA-encircled lipid bilayers. Nanoscale, 2018, 10, 18463-18467.	2.8	35
24	Ancient Family of Retinal Proteins Brought to Light "Sight-Unseen― Biochemistry, 2018, 57, 6735-6737.	1.2	1
25	G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs. Science Signaling, 2018, 11, .	1.6	31
26	Photoaffinity Cross-Linking and Unnatural Amino Acid Mutagenesis Reveal Insights into Calcitonin Gene-Related Peptide Binding to the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein 1 (CLR/RAMP1) Complex. Biochemistry, 2018, 57, 4915-4922.	1.2	20
27	Update on Alzheimer's Disease Therapy and Prevention Strategies. Annual Review of Medicine, 2017, 68, 413-430.	5.0	402
28	Introduction: G-Protein Coupled Receptors. Chemical Reviews, 2017, 117, 1-3.	23.0	19
29	Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Scientific Reports, 2017, 7, 42880.	1.6	29
30	Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R). Journal of Biological Chemistry, 2017, 292, 7131-7144.	1.6	41
31	Tracking Pore Hydration within the Red-Activatable Channelrhodopsin ReaChR by Site-Directed Labeling with Infrared-Active Azido Probes. Biophysical Journal, 2017, 112, 549a.	0.2	0
32	Measurement of Slow Spontaneous Release ofÂ11-cis-Retinal from Rhodopsin. Biophysical Journal, 2017, 112, 153-161.	0.2	14
33	Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR. Biophysical Journal, 2017, 112, 1166-1175.	0.2	18
34	Length-dependent gene misexpression is associated with Alzheimer's disease progression. Scientific Reports, 2017, 7, 190.	1.6	16
35	GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12015-12020.	3.3	30
36	Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular		1

Dynamics Modeling and Experimental Approaches. , 2017, , 385-414.

1

#	Article	IF	CITATIONS
37	The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophysical Journal, 2017, 113, 60-72.	0.2	16
38	Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13296-13301.	3.3	33
39	Isopeptide and ester bond ubiquitination both regulate degradation of the human dopamine receptor 4. Journal of Biological Chemistry, 2017, 292, 21623-21630.	1.6	17
40	Brain gene expression signature on primate genomic sequence evolution. Scientific Reports, 2017, 7, 17329.	1.6	5
41	Inside-out receptor inhibition. Nature, 2016, 540, 344-345.	13.7	6
42	Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nature Genetics, 2016, 48, 675-680.	9.4	236
43	CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Molecular Pharmacology, 2016, 90, 483-495.	1.0	84
44	Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Nature Communications, 2016, 7, 11261.	5.8	51
45	Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 2016, 22, 154-162.	15.2	201
46	A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chemical Communications, 2016, 52, 5451-5454.	2.2	39
47	Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurology, The, 2016, 15, 455-532.	4.9	1,242
48	Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes. Methods in Enzymology, 2016, 570, 357-388.	0.4	9
49	Micelleâ€Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipidâ€Embedded Surface of a GPCR. ChemBioChem, 2015, 16, 1314-1322.	1.3	18
50	Novel Chemical Biology Methods Illuminate the Function of Single G Protein-Coupled Receptors. Biophysical Journal, 2015, 108, 96a.	0.2	0
51	Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids. Biochemistry, 2015, 54, 776-786.	1.2	16
52	Development of a CCK1R-membrane nanoparticle as a fish-out tool for bioactive peptides. Peptides, 2015, 68, 219-227.	1.2	0
53	Bioorthogonal Labeling of Chrelin Receptor to Facilitate Studies of Ligand-Dependent Conformational Dynamics. Chemistry and Biology, 2015, 22, 1431-1436.	6.2	17
54	Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs. Methods in Molecular Biology, 2015, 1335, 67-93.	0.4	3

#	Article	IF	CITATIONS
55	Optimized Zebrafish Apolipoprotein A-I Expression and Purification for Nabbs Assembly. Biophysical Journal, 2014, 106, 104a-105a.	0.2	1
56	Multi-Color, Single-Molecule Fluorescence Imaging of GPCR Signalosomes. Biophysical Journal, 2014, 106, 238a.	0.2	0
57	Antibody Epitopes on G Protein-Coupled Receptors Mapped with Genetically Encoded Photoactivatable Cross-Linkers. Biochemistry, 2014, 53, 1302-1310.	1.2	28
58	Bioorthogonal Fluorescent Labeling of Functional Gâ€Protein oupled Receptors. ChemBioChem, 2014, 15, 1820-1829.	1.3	43
59	Mapping Substance P Binding Sites on the Neurokinin-1 Receptor Using Genetic Incorporation of a Photoreactive Amino Acid. Journal of Biological Chemistry, 2014, 289, 18045-18054.	1.6	49
60	Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. Chemistry and Biology, 2014, 21, 1224-1237.	6.2	38
61	Site-Specific Tagging of Channelrhodopsins with Genetically-Encoded Azido Groups. Biophysical Journal, 2014, 106, 381a.	0.2	0
62	Supramolecular Organization of Rod Outer Segment Membrane: New Rhodopsin Dimer Interface and Insights from the β2Ar-Gs Complex. Biophysical Journal, 2014, 106, 305a-306a.	0.2	0
63	Mutagenesis Study of Retinal Entry Pathway of Rhodopsin. Biophysical Journal, 2014, 106, 306a.	0.2	0
64	Homogeneous Time-Resolved Fluorescence Assay to Probe Folded G Protein-Coupled Receptors. Methods in Enzymology, 2013, 522, 169-189.	0.4	3
65	Unnatural Amino Acid Mutagenesis of GPCRs Using Amber Codon Suppression and Bioorthogonal Labeling. Methods in Enzymology, 2013, 520, 281-305.	0.4	32
66	Site-Specific Bioorthogonal Labeling of a G Protein-Coupled Receptor at a Genetically Encoded Azido Amino Acid. Biophysical Journal, 2013, 104, 27a.	0.2	0
67	Probing G Protein-Coupled Receptor—Ligand Interactions with Targeted Photoactivatable Cross-Linkers. Biochemistry, 2013, 52, 8625-8632.	1.2	46
68	Site-Specific Labeling of Genetically Encoded Azido Groups for Multicolor, Single-Molecule Fluorescence Imaging of GPCRs. Methods in Cell Biology, 2013, 117, 267-303.	0.5	13
69	Site-Specific Epitope Tagging of G Protein-Coupled Receptors by Bioorthogonal Modification of a Genetically Encoded Unnatural Amino Acid. Biochemistry, 2013, 52, 1028-1036.	1.2	37
70	Visualizing Ghrelin Receptor through Genetically Encoded Labeling for Monitoring the Single-Molecule Conformational Dynamics. Biophysical Journal, 2013, 104, 612a.	0.2	0
71	Incorporation of Fluorescently Tagged Chemokine Receptor 5 (CCR5) into Membrane Nanoparticles. Biophysical Journal, 2013, 104, 115a.	0.2	0
72	Mapping a Ligand Binding Site Using Genetically Encoded Photoactivatable Crosslinkers. Methods in Enzymology, 2013, 520, 307-322.	0.4	19

#	Article	IF	CITATIONS
73	Spectral Tuning of Ultraviolet Cone Pigments: An Interhelical Lock Mechanism. Journal of the American Chemical Society, 2013, 135, 19064-19067.	6.6	24
74	Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors. Journal of Visualized Experiments, 2013, , .	0.2	9
75	Use of G-Protein-Coupled and -Uncoupled CCR5 Receptors by CCR5 Inhibitor-Resistant and -Sensitive Human Immunodeficiency Virus Type 1 Variants. Journal of Virology, 2013, 87, 6569-6581.	1.5	38
76	Unnatural amino acids for the study of chemokine receptor structure and dynamics. Drug Discovery Today: Technologies, 2012, 9, e301-e313.	4.0	3
77	Redder Than Red. Science, 2012, 338, 1299-1300.	6.0	6
78	Identification of a Small Molecule-Ligand-Binding Pocket in a G Protein-Coupled Receptor using Genetically-Encoded Photocrosslinkers. Biophysical Journal, 2012, 102, 240a.	0.2	0
79	Dual-Color Fluorescent Labeling of G Protein-Coupled Receptors. Biophysical Journal, 2012, 102, 518a.	0.2	0
80	Dynamic Assembly of the Receptor-G-Protein Signaling Complex. Biophysical Journal, 2012, 102, 516a.	0.2	0
81	Rhodopsin Forms a Dimer with Cytoplasmic Helix 8 Contacts in Native Membranes. Biochemistry, 2012, 51, 1819-1821.	1.2	65
82	Har Gobind Khorana (1922–2011): Chemical Biology Pioneer. ACS Chemical Biology, 2012, 7, 250-251.	1.6	0
83	Genetically Encoded Photo-cross-linkers Map the Binding Site of an Allosteric Drug on a G Protein-Coupled Receptor. ACS Chemical Biology, 2012, 7, 967-972.	1.6	67
84	Nucleobindin 1 Caps Human Islet Amyloid Polypeptide Protofibrils to Prevent Amyloid Fibril Formation. Journal of Molecular Biology, 2012, 421, 378-389.	2.0	21
85	Contributions of H G Khorana to understanding transmembrane signal transduction. Resonance, 2012, 17, 1165-1173.	0.2	1
86	Probing GPCR Signaling with Genetically-Encoded Non-Natural Amino Acids. Biophysical Journal, 2012, 102, 609a.	0.2	0
87	Biochemical Crosslinking and Liquid Chromatography-Mass Spectrometry Demonstrate a Rhodopsin Dimerization Interface Mediated by Helices 1 and 8. Biophysical Journal, 2012, 102, 239a.	0.2	0
88	Ion channel in the spotlight. Nature, 2012, 482, 318-319.	13.7	1
89	Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. Journal of the American Chemical Society, 2012, 134, 10959-10965.	6.6	199
90	Direct Measurement of Thermal Stability of Expressed CCR5 and Stabilization by Small Molecule Ligands. Biochemistry, 2011, 50, 502-511.	1.2	44

91Direct Interaction between an Allosteric Agonist Pepducin and the Chemokine Receptor CXCR4. Journal of the American Chemical Society, 2011, 133, 15878-15881.6.66492Novel Trifunctional Bio-Orthogonal Reagents for Microscale Stoichiometric Labeling of Proteins for Single-Molecule Fluorescence Studies of Signalosomes. Biophysical Journal, 2011, 100, 256a-257a.0.2093Halting the Amyloid March: How a Novel Ca2+-Binding Protein, NUCB1, Prevents the Formation of Amyloid Fibrils. Biophysical Journal, 2011, 100, 538a.0.2094Structural Dynamics of a Signalosome: The Receptor-G protein Complex. Biophysical Journal, 2011, 100, 255a.0.20	4
92Novel Trifunctional Bio-Orthogonal Reagents for Microscale Stoichiometric Labeling of Proteins for Single-Molecule Fluorescence Studies of Signalosomes. Biophysical Journal, 2011, 100, 256a-257a.0.2093Halting the Amyloid March: How a Novel Ca2+-Binding Protein, NUCB1, Prevents the Formation of Amyloid Fibrils. Biophysical Journal, 2011, 100, 538a.0.2094Structural Dynamics of a Signalosome: The Receptor-G protein Complex. Biophysical Journal, 2011, 100, 255a.0.20	
93Halting the Amyloid March: How a Novel Ca2+-Binding Protein, NUCB1, Prevents the Formation of Amyloid Fibrils. Biophysical Journal, 2011, 100, 538a.0.2094Structural Dynamics of a Signalosome: The Receptor-G protein Complex. Biophysical Journal, 2011, 100, 255a.0.20	
94 Structural Dynamics of a Signalosome: The Receptor-G protein Complex. Biophysical Journal, 2011, 100, 0.2 0	
Useb Throughout Macaurament of CDCD Stability, At Forstornale Scale, Displaying Lournal, 2011, 100	
95 178a.	Į
96 Mapping the Ligand-Binding Site on a G Protein-Coupled Receptor (GPCR) Using Genetically Encoded 1.2 91 Photocrosslinkers. Biochemistry, 2011, 50, 3411-3413.	
97 Site-Specific Fluorescent Labeling of G Protein-Coupled Receptors. Biophysical Journal, 2011, 100, 256a. 0.2 0	
 Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends in Pharmacological Sciences, 2011, 32, 410-419. 	5
G protein–coupled receptor modulation with pepducins: moving closer to the clinic. Annals of the 1.8 39 New York Academy of Sciences, 2011, 1226, 34-49.	
100Opsin Is a Phospholipid Flippase. Current Biology, 2011, 21, 149-153.1.815	54
¹⁰¹ Site-specific in vitro and in vivo incorporation of molecular probes to study G-protein-coupled 2.8 41 receptors. Current Opinion in Chemical Biology, 2011, 15, 392-398.	
102Multiple CCR5 Conformations on the Cell Surface Are Used Differentially by Human Immunodeficiency Viruses Resistant or Sensitive to CCR5 Inhibitors. Journal of Virology, 2011, 85, 8227-8240.1.560)
CXCR7/CXCR4 Heterodimer Constitutively Recruits β-Arrestin to Enhance Cell Migration. Journal of1.629Biological Chemistry, 2011, 286, 32188-32197.	95
104Clicking class B GPCR ligands. Nature Chemical Biology, 2011, 7, 500-501.3.95	
105 Snapshot of a signalling complex. Nature, 2011, 477, 540-541. 13.7 16	5
106Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature, 2010, 464, 1386-1389.13.724	45
Nucleobindin 1 Is a Calcium-regulated Guanine Nucleotide Dissociation Inhibitor of Gαi1. Journal of Biological Chemistry, 2010, 285, 31647-31660.	3

108 Structure and Function of G-Protein-Coupled Receptors. , 2010, , 151-156.

2

#	Article	IF	CITATIONS
109	Methodology of Pulsed Photoacoustics and Its Application to Probe Photosystems and Receptors. Sensors, 2010, 10, 5642-5667.	2.1	12
110	Quantitative GPCR Assay Using Time-Resolved Fret. Biophysical Journal, 2010, 98, 287a.	0.2	0
111	SEIRA Spectroscopy on a Membrane Receptor Monolayer Using Lipoprotein Particles as Carriers. Biophysical Journal, 2010, 99, 2327-2335.	0.2	21
112	Molecular Dynamics Simulations of Active Receptor-G Protein Complex in a Lipid Bilayer. Biophysical Journal, 2010, 98, 289a.	0.2	0
113	Novel Technology to Study Chemokine Receptor Signaling Complexes. Biophysical Journal, 2010, 98, 292a.	0.2	0
114	Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22255-22259.	3.3	90
115	FTIR analysis of GPCR activation using azido probes. Nature Chemical Biology, 2009, 5, 397-399.	3.9	173
116	Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Structural and Molecular Biology, 2009, 16, 168-175.	3.6	210
117	6- <i>s-cis</i> Conformation and Polar Binding Pocket of the Retinal Chromophore in the Photoactivated State of Rhodopsin. Journal of the American Chemical Society, 2009, 131, 15160-15169.	6.6	38
118	Structural Evidence for a Sequential Release Mechanism for Activation of Heterotrimeric G Proteins. Journal of Molecular Biology, 2009, 393, 882-897.	2.0	45
119	Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosineâ€containing peptides. Biopolymers, 2008, 90, 459-477.	1.2	97
120	Bilateral olfactory sensory input enhances chemotaxis behavior. Nature Neuroscience, 2008, 11, 187-199.	7.1	167
121	Structural Basis for Ligand Binding and Specificity in Adrenergic Receptors: Implications for GPCR-Targeted Drug Discovery. Biochemistry, 2008, 47, 11013-11023.	1.2	60
122	Rapid Incorporation of Functional Rhodopsin into Nanoscale Apolipoprotein Bound Bilayer (NABB) Particles. Journal of Molecular Biology, 2008, 377, 1067-1081.	2.0	110
123	Functional Role of the "Ionic Lockâ€â€"An Interhelical Hydrogen-Bond Network in Family A Heptahelical Receptors. Journal of Molecular Biology, 2008, 380, 648-655.	2.0	148
124	Sequential Tyrosine Sulfation of CXCR4 by Tyrosylprotein Sulfotransferases. Biochemistry, 2008, 47, 11251-11262.	1.2	84
125	Rhodopsin's active state is frozen like a DEER in the headlights. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7343-7344.	3.3	9
126	Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis. Journal of Biological Chemistry, 2008, 283, 1525-1533.	1.6	155

#	Article	IF	CITATIONS
127	Structural Basis of CXCR4 Sulfotyrosine Recognition by the Chemokine SDF-1/CXCL12. Science Signaling, 2008, 1, ra4.	1.6	256
128	A Novel Interaction between Atrophin-interacting Protein 4 and β-p21-activated Kinase-interactive Exchange Factor Is Mediated by an SH3 Domain. Journal of Biological Chemistry, 2007, 282, 28893-28903.	1.6	25
129	G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers. Journal of the American Chemical Society, 2007, 129, 10126-10132.	6.6	298
130	Photointermediates of the Rhodopsin S186A Mutant as a Probe of the Hydrogen-Bond Network in the Chromophore Pocket and the Mechanism of Counterion Switchâ€. Journal of Physical Chemistry C, 2007, 111, 8843-8848.	1.5	22
131	G protein βγ subunit interaction with the dynein light-chain component Tctex-1 regulates neurite outgrowth. EMBO Journal, 2007, 26, 2621-2632.	3.5	76
132	Coupling of Protonation Switches During Rhodopsin Activationâ€. Photochemistry and Photobiology, 2007, 83, 286-292.	1.3	32
133	Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes. Biophysical Journal, 2006, 91, 4464-4477.	0.2	261
134	Modulating Rhodopsin Receptor Activation by Altering the pKaof the Retinal Schiff Base. Journal of the American Chemical Society, 2006, 128, 10503-10512.	6.6	22
135	Proton Movement and Photointermediate Kinetics in Rhodopsin Mutants. Biochemistry, 2006, 45, 5430-5439.	1.2	11
136	Agonists and Partial Agonists of Rhodopsin:Â Retinal Polyene Methylation Affects Receptor Activationâ€. Biochemistry, 2006, 45, 1640-1652.	1.2	49
137	Parietal-Eye Phototransduction Components and Their Potential Evolutionary Implications. Science, 2006, 311, 1617-1621.	6.0	113
138	Crystal Structure of the SH3 Domain of βPIX in Complex with a High Affinity Peptide from PAK2. Journal of Molecular Biology, 2006, 358, 509-522.	2.0	45
139	Recognition of a CXCR4 Sulfotyrosine by the Chemokine Stromal Cell-derived Factor-1α (SDF-1α/CXCL12). Journal of Molecular Biology, 2006, 359, 1400-1409.	2.0	116
140	Interaction of small molecule inhibitors of HIV-1 entry with CCR5. Virology, 2006, 349, 41-54.	1.1	123
141	Timing Is Everything: Direct Measurement of Retinol Production in Cones and Rods. Journal of General Physiology, 2006, 128, 147-148.	0.9	3
142	The Photoreceptor Membrane as a Model System in the Study of Biological Signal Transduction. Behavior Research Methods, 2005, 1, 181-206.	2.3	0
143	The Role of Glu181 in the Photoactivation of Rhodopsin. Journal of Molecular Biology, 2005, 353, 345-356.	2.0	105
144	The Differential Sensitivity of Human and Rhesus Macaque CCR5 to Small-Molecule Inhibitors of Human Immunodeficiency Virus Type 1 Entry Is Explained by a Single Amino Acid Difference and Suggests a Mechanism of Action for These Inhibitors. Journal of Virology, 2004, 78, 4134-4144.	1.5	42

#	Article	IF	CITATIONS
145	The state of GPCR research in 2004. Nature Reviews Drug Discovery, 2004, 3, 577-626.	21.5	81
146	Time-Resolved Photointermediate Changes in Rhodopsin Glutamic Acid 181 Mutantsâ€. Biochemistry, 2004, 43, 12614-12621.	1.2	28
147	Resonance Raman Analysis of the Mechanism of Energy Storage and Chromophore Distortion in the Primary Visual Photoproductâ€. Biochemistry, 2004, 43, 10867-10876.	1.2	51
148	Small-Molecule Antagonists of CCR5 and CXCR4: A Promising New Class of Anti-HIV-1 Drugs. Current Pharmaceutical Design, 2004, 10, 2041-2062.	0.9	79
149	Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9262-9267.	3.3	204
150	Analysis of the Mechanism by Which the Small-Molecule CCR5 Antagonists SCH-351125 and SCH-350581 Inhibit Human Immunodeficiency Virus Type 1 Entry. Journal of Virology, 2003, 77, 5201-5208.	1.5	200
151	Structure and Function of G-Protein-Coupled Receptors: Lessons from the Crystal Structure of Rhodopsin. , 2003, , 139-143.		Ο
152	Rhodopsin: Insights from Recent Structural Studies. Annual Review of Biophysics and Biomolecular Structure, 2002, 31, 443-484.	18.3	222
153	Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11031-11036.	3.3	100
154	Interaction of A2E with Model Membranes. Implications to the Pathogenesis of Age-related Macular Degeneration. Journal of General Physiology, 2002, 120, 147-157.	0.9	89
155	Recreating a Functional Ancestral Archosaur Visual Pigment. Molecular Biology and Evolution, 2002, 19, 1483-1489.	3.5	147
156	Synthetic gene technology: Applications to ancestral gene reconstruction and structure-function studies of receptors. Methods in Enzymology, 2002, 343, 274-294.	0.4	17
157	Roles of Specific Extracellular Domains of the Glucagon Receptor in Ligand Binding and Signalingâ€. Biochemistry, 2002, 41, 11795-11803.	1.2	45
158	Function of Extracellular Loop 2 in Rhodopsin:Â Glutamic Acid 181 Modulates Stability and Absorption Wavelength of Metarhodopsin IIâ€. Biochemistry, 2002, 41, 3620-3627.	1.2	92
159	Evidence That Helix 8 of Rhodopsin Acts as a Membrane-Dependent Conformational Switchâ€. Biochemistry, 2002, 41, 8298-8309.	1.2	95
160	Disruption of the α5 Helix of Transducin Impairs Rhodopsin-Catalyzed Nucleotide Exchangeâ€. Biochemistry, 2002, 41, 6988-6994.	1.2	51
161	Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. Current Opinion in Cell Biology, 2002, 14, 189-195.	2.6	107
162	Glucagon receptor causes glucagon-dependent activation of Erk1/2 in H22 stable cell lines. , 2002, , 600-601.		0

#	Article	IF	CITATIONS
163	Rhodopsin: Structural Basis of Molecular Physiology. Physiological Reviews, 2001, 81, 1659-1688.	13.1	291
164	Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10102-10107.	3.3	47
165	Rapid Activation of Transducin by Mutations Distant from the Nucleotide-binding Site. Journal of Biological Chemistry, 2001, 276, 27400-27405.	1.6	62
166	The Function of Interdomain Interactions in Controlling Nucleotide Exchange Rates in Transducin. Journal of Biological Chemistry, 2001, 276, 23873-23880.	1.6	32
167	[9] Analysis of functional microdomains of rhodopsin. Methods in Enzymology, 2000, 315, 116-130.	0.4	7
168	[13] Structural determinants of active state conformation of rhodopsin: Molecular biophysics approaches. Methods in Enzymology, 2000, 315, 178-196.	0.4	18
169	[18] Assays for activation of recombinant expressed opsins by all-trans-retinals. Methods in Enzymology, 2000, 315, 251-267.	0.4	12
170	Restoration of compact discs. Nature Genetics, 2000, 25, 245-246.	9.4	1
171	The Amino Terminus of the Fourth Cytoplasmic Loop of Rhodopsin Modulates Rhodopsin-Transducin Interaction. Journal of Biological Chemistry, 2000, 275, 1930-1936.	1.6	121
172	Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5762-5767.	3.3	182
173	Mutation of the Fourth Cytoplasmic Loop of Rhodopsin Affects Binding of Transducin and Peptides Derived from the Carboxyl-terminal Sequences of Transducin α and γ Subunits. Journal of Biological Chemistry, 2000, 275, 1937-1943.	1.6	146
174	A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5639-5644.	3.3	413
175	Selective Stabilization of the High Affinity Binding Conformation of Glucagon Receptor by the Long Splice Variant of Gαs. Journal of Biological Chemistry, 2000, 275, 21631-21638.	1.6	26
176	Reconstitution of the Vertebrate Visual Cascade Using Recombinant Heterotrimeric Transducin Purified from Sf9 Cells. Protein Expression and Purification, 2000, 20, 514-526.	0.6	25
177	Rhodopsin Activation Affects the Environment of Specific Neighboring Phospholipids: An FTIR Spectroscopic Study. Biophysical Journal, 2000, 79, 3063-3071.	0.2	45
178	Selective Reconstitution of Human D4 Dopamine Receptor Variants with Giα Subtypes. Biochemistry, 2000, 39, 3734-3744.	1.2	65
179	pH Dependence of Photolysis Intermediates in the Photoactivation of Rhodopsin Mutant E113Q. Biochemistry, 2000, 39, 599-606.	1.2	19
180	Transducin-Dependent Protonation of Glutamic Acid 134 in Rhodopsinâ€. Biochemistry, 2000, 39, 10607-10612.	1.2	73

#	Article	IF	CITATIONS
181	Dopamine D4/D2 Receptor Selectivity Is Determined by A Divergent Aromatic Microdomain Contained within the Second, Third, and Seventh Membrane-Spanning Segments. Molecular Pharmacology, 1999, 56, 1116-1126.	1.0	92
182	Two Cytoplasmic Loops of the Glucagon Receptor Are Required to Elevate cAMP or Intracellular Calcium. Journal of Biological Chemistry, 1999, 274, 19455-19464.	1.6	49
183	How color visual pigments are tuned. Trends in Biochemical Sciences, 1999, 24, 300-305.	3.7	198
184	Rhodopsin Early Receptor Potential Revisited. Biophysical Journal, 1999, 77, 1189-1190.	0.2	6
185	Colour Tuning Mechanisms of Visual Pigments. Novartis Foundation Symposium, 1999, 224, 124-141.	1.2	8
186	Lipid Involvment in Rhodopsin Interaction. , 1999, , 373-374.		0
187	AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Medicine, 1998, 4, 72-77.	15.2	760
188	Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II1. FEBS Letters, 1998, 436, 304-308.	1.3	49
189	Spectroscopic Evidence for Interaction between Transmembrane Helices 3 and 5 in Rhodopsinâ€. Biochemistry, 1998, 37, 7630-7639.	1.2	82
190	Constitutive Activation of Opsin by Mutation of Methionine 257 on Transmembrane Helix 6â€. Biochemistry, 1998, 37, 8253-8261.	1.2	150
191	Role of the C9Methyl Group in Rhodopsin Activation:Â Characterization of Mutant Opsins with the Artificial Chromophore 11-cis-9-Demethylretinalâ€. Biochemistry, 1998, 37, 538-545.	1.2	58
192	Mechanisms of Spectral Tuning in Blue Cone Visual Pigments. Journal of Biological Chemistry, 1998, 273, 24583-24591.	1.6	126
193	Amino-Terminal Substitutions in the CCR5 Coreceptor Impair gp120 Binding and Human Immunodeficiency Virus Type 1 Entry. Journal of Virology, 1998, 72, 279-285.	1.5	209
194	Partial Agonist Activity of 11-cis-Retinal in Rhodopsin Mutants. Journal of Biological Chemistry, 1997, 272, 23081-23085.	1.6	37
195	Rhodopsin: A Prototypical G Protein-Coupled Receptor. Progress in Molecular Biology and Translational Science, 1997, 59, 1-34.	1.9	84
196	Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8557-8562.	3.3	48
197	Time-Resolved Spectroscopy of the Early Photolysis Intermediates of Rhodopsin Schiff Base Counterion Mutantsâ€. Biochemistry, 1997, 36, 1999-2009.	1.2	19
198	Properties of Early Photolysis Intermediates of Rhodopsin Are Affected by Glycine 121 and Phenylalanine 261â€. Biochemistry, 1997, 36, 11804-11810.	1.2	23

#	Article	IF	CITATIONS
199	The steric trigger in rhodopsin activation 1 1Edited by F. E.Cohen. Journal of Molecular Biology, 1997, 269, 373-384.	2.0	98
200	The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13442-13447.	3.3	69
201	Specific Tryptophan UV-Absorbance Changes Are Probes of the Transition of Rhodopsin to Its Active Stateâ€. Biochemistry, 1996, 35, 11149-11159.	1.2	244
202	Spectroscopic Evidence for Altered Chromophoreâ^Protein Interactions in Low-Temperature Photoproducts of the Visual Pigment Responsible for Congenital Night Blindnessâ€. Biochemistry, 1996, 35, 15065-15073.	1.2	25
203	Characterization of the Mutant Visual Pigment Responsible for Congenital Night Blindness:Â A Biochemical and Fourier-Transform Infrared Spectroscopy Studyâ€. Biochemistry, 1996, 35, 7536-7545.	1.2	53
204	Antibodies against specific extracellular epitopes of the glucagon receptor block glucagon binding Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 310-315.	3.3	55
205	Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature, 1996, 383, 347-350.	13.7	429
206	The Effects of Amino Acid Replacements of Glycine 121 on Transmembrane Helix 3 of Rhodopsin. Journal of Biological Chemistry, 1996, 271, 32330-32336.	1.6	71
207	Functional Interaction of Transmembrane Helices 3 and 6 in Rhodopsin. Journal of Biological Chemistry, 1996, 271, 32337-32342.	1.6	79
208	Properties and Photoactivity of Rhodopsin Mutants. Israel Journal of Chemistry, 1995, 35, 325-337.	1.0	29
209	[17] Synthesis and expression of synthetic genes: Applications to structure-function studies of receptors. Methods in Neurosciences, 1995, , 322-344.	0.5	4
210	Photoactivated state of rhodopsin and how it can form. Biophysical Chemistry, 1995, 56, 171-181.	1.5	59
211	Characterization of Rhodopsin Mutants That Bind Transducin but Fail to Induce GTP Nucleotide Uptake. Journal of Biological Chemistry, 1995, 270, 10580-10586.	1.6	78
212	Characterization of Deletion and Truncation Mutants of the Rat Glucagon Receptor. Journal of Biological Chemistry, 1995, 270, 27720-27727.	1.6	86
213	Identification of Glutamic Acid 113 as the Schiff Base Proton Acceptor in the Metarhodopsin II Photointermediate of Rhodopsin. Biochemistry, 1994, 33, 10878-10882.	1.2	156
214	A Mutant Rhodopsin Photoproduct with a Protonated Schiff Base Displays an Active-State Conformation: A Fourier-Transform Infrared Spectroscopy Study. Biochemistry, 1994, 33, 13700-13705.	1.2	47
215	Characterization of Rhodopsin-Transducin Interaction: A Mutant Rhodopsin Photoproduct with a Protonated Schiff Base Activates Transducin. Biochemistry, 1994, 33, 9753-9761.	1.2	61
216	Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry, 1993, 32, 7229-7236.	1.2	240

#	Article	IF	CITATIONS
217	Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant. Biochemistry, 1993, 32, 9165-9171.	1.2	62
218	Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10206-10210.	3.3	260
219	Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. Biochemistry, 1992, 31, 5105-5111.	1.2	67
220	The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3079-3083.	3.3	146
221	Rhodopsin mutants that bind but fail to activate transducin. Science, 1990, 250, 123-125.	6.0	460
222	Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin Proceedings of the United States of America, 1989, 86, 8309-8313.	3.3	760
223	Total synthesis and expression of a gene for the α-subunit of bovine rod outer segment guanine nucleotide-binding protein (transducin). Nucleic Acids Research, 1988, 16, 6361-6372.	6.5	25
224	Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8459-8463.	3.3	416
225	A differential labeling model for determining the number of catalytically essential carboxyl groups in fumarase. Biochimica Et Biophysica Acta - Biomembranes, 1981, 662, 196-201.	1.4	2