Gabriella Testa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3753040/publications.pdf

Version: 2024-02-01

236925 289244 1,916 38 25 40 citations h-index g-index papers 45 45 45 2930 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radical Biology and Medicine, 2022, 181, 251-269.	2.9	5
2	Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: A major role for lipocalin-2. Redox Biology, 2021, 39, 101837.	9.0	35
3	Up-regulation of PCSK6 by lipid oxidation products: A possible role in atherosclerosis. Biochimie, 2021, 181, 191-203.	2.6	12
4	The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants, 2021, 10, 740.	5.1	33
5	Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes?. Antioxidants, 2021, 10, 1890.	5.1	20
6	A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants, 2019, 8, 151.	5.1	24
7	Omics analysis of oxysterols to better understand their pathophysiological role. Free Radical Biology and Medicine, 2019, 144, 55-71.	2.9	28
8	A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 556.	2.8	48
9	Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. European Journal of Lipid Science and Technology, 2019, 121, 1700047.	1.5	81
10	Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radical Biology and Medicine, 2018, 129, 354-363.	2.9	15
11	25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox Biology, 2018, 19, 318-330.	9.0	62
12	A silver lining for 24-hydroxycholesterol in Alzheimer's disease: The involvement of the neuroprotective enzyme sirtuin 1. Redox Biology, 2018, 17, 423-431.	9.0	33
13	The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells. Redox Biology, 2018, 17, 400-410.	9.0	23
14	Implication of oxysterols in chronic inflammatory human diseases. Biochimie, 2018, 153, 220-231.	2.6	63
15	Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radical Biology and Medicine, 2017, 111, 140-150.	2.9	44
16	The role of oxysterols in vascular ageing. Journal of Physiology, 2016, 594, 2095-2113.	2.9	67
17	Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biology, 2016, 10, 24-33.	9.0	192
18	Role of 27-hydroxycholesterol and 4-hydroxynonenal in atherosclerotic plaque vulnerability. Free Radical Biology and Medicine, 2016, 96, S36-S37.	2.9	1

#	Article	IF	CITATIONS
19	Nrf2 antioxidant defense is involved in survival signaling elicited by 27-hydroxycholesterol in human promonocytic cells. Free Radical Biology and Medicine, 2016, 91, 93-104.	2.9	22
20	Relation between TLR4/NFâ€Î°B signaling pathway activation by 27â€hydroxycholesterol and 4â€hydroxynonenal, and atherosclerotic plaque instability. Aging Cell, 2015, 14, 569-581.	6.7	110
21	Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 119.	3.4	135
22	The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food and Function, 2015, 6, 1218-1228.	4.6	43
23	Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models. Journal of Biomedical Nanotechnology, 2015, 11, 2169-2185.	1.1	8
24	Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation. Free Radical Biology and Medicine, 2014, 77, 376-385.	2.9	38
25	Modulation of cell signaling pathways by oxysterols in age-related human diseases. Free Radical Biology and Medicine, 2014, 75, S5.	2.9	5
26	Upâ€regulation of βâ€amyloidogenesis in neuronâ€like human cells by both 24―and 27â€hydroxycholesterol: protective effect of <i>N</i> à€acetylâ€cysteine. Aging Cell, 2014, 13, 561-572.	6.7	52
27	Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS ONE, 2014, 9, e96795.	2.5	80
28	Calorie Restriction and Dietary Restriction Mimetics: A Strategy for Improving Healthy Aging and Longevity. Current Pharmaceutical Design, 2014, 20, 2950-2977.	1.9	121
29	Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie, 2013, 95, 632-640.	2.6	36
30	Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochemical Pharmacology, 2013, 86, 138-145.	4.4	37
31	Molecular Signaling Involved in Oxysterol-Induced \hat{I}^21 -Integrin Over-Expression in Human Macrophages. International Journal of Molecular Sciences, 2012, 13, 14278-14293.	4.1	12
32	Potentiation of amyloid- \hat{l}^2 peptide neurotoxicity in human dental-pulp neuron-like cells by the membrane lipid peroxidation product 4-hydroxynonenal. Free Radical Biology and Medicine, 2012, 53, 1708-1717.	2.9	15
33	The link between altered cholesterol metabolism and Alzheimer's disease. Annals of the New York Academy of Sciences, 2012, 1259, 54-64.	3.8	108
34	Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer's disease: three partners in crime. Aging Cell, 2011, 10, 403-417.	6.7	85
35	Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mechanisms of Ageing and Development, 2011, 132, 305-314.	4.6	28
36	New Insights into Redox-Modulated Cell Signaling. Current Pharmaceutical Design, 2011, 17, 3994-4006.	1.9	33

#	Article	IF	CITATIONS
37	Design and Development of Nanovehicle-Based Delivery Systems for Preventive or Therapeutic Supplementation with Flavonoids. Current Medicinal Chemistry, 2010, 17, 74-95.	2.4	126
38	Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid. International Journal of Pharmaceutics, 2009, 378, 86-92.	5.2	34