Ashok Mulchandani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3751157/publications.pdf

Version: 2024-02-01

357 papers

20,494 citations

75 h-index 120 g-index

361 all docs

361 docs citations

times ranked

361

19342 citing authors

#	Article	IF	CITATIONS
1	Synthesis of pristine graphene-like behaving rGO thin film: Insights into what really matters. Carbon, 2022, 186, 437-451.	10.3	13
2	Bio-sensitized solar cells built from renewable carbon sources. Materials Today Energy, 2022, 23, 100910.	4.7	7
3	Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated With a 3D-Printed Flow Cell. Frontiers in Chemistry, 2022, 10, 815805.	3.6	7
4	Graphene compared to fluorine-doped tin oxide as transparent conductor in ZnO dye-sensitized solar cells. Journal of Environmental Chemical Engineering, 2022, 10, 107551.	6.7	13
5	The evolution of metal size and partitioning throughout the wastewater treatment train. Journal of Hazardous Materials, 2021, 402, 123761.	12.4	2
6	An origami electrical biosensor for multiplexed analyte detection in body fluids. Biosensors and Bioelectronics, 2021, 171, 112721.	10.1	33
7	Development of an Interdigitated Electrode-Based Disposable Enzyme Sensor Strip for Glycated Albumin Measurement. Molecules, 2021, 26, 734.	3 . 8	18
8	Scalable chemical vapor deposited graphene field-effect transistors for bio/chemical assay. Applied Physics Reviews, 2021, 8, .	11.3	10
9	Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosensors and Bioelectronics, 2021, 176, 112941.	10.1	28
10	Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Analytica Chimica Acta, 2021, 1150, 338232.	5 . 4	19
11	Electrodeposition of ZnO nanorods on graphene: tuning the topography for application as tin oxide-free electron transport layer. Journal of Applied Electrochemistry, 2021, 51, 977-989.	2.9	2
12	Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor. Biosensors and Bioelectronics, 2021, 180, 113090.	10.1	12
13	Toward Rapid Detection of Trace Lead and Cadmium by Anodic Stripping Voltammetry in Complex Wastewater Streams. ACS ES&T Engineering, 2021, 1, 1509-1516.	7.6	9
14	Chemiresistor sensor based on ion-imprinted polymer (IIP)-functionalized rGO for Cd(II) ions in water. Sensors and Actuators B: Chemical, 2021, 346, 130474.	7.8	22
15	Current status, advances, challenges and perspectives on biosensors for COVID-19 diagnosis in resource-limited settings. Sensors and Actuators Reports, 2021, 3, 100025.	4.4	24
16	Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe3O4-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). Sensors, 2021, 21, 883.	3.8	19
17	Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors, 2021, 21, 6578.	3.8	360
18	Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors. Biosensors, 2021, 11, 514.	4.7	6

#	Article	IF	CITATIONS
19	Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosensors and Bioelectronics, 2020, 147, 111766.	10.1	44
20	Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosensors and Bioelectronics, 2020, 148, 111794.	10.1	52
21	Structure: Function Studies of the Cytosolic, Mo- and NAD+-Dependent Formate Dehydrogenase from Cupriavidus necator. Inorganics, 2020, 8, 41.	2.7	7
22	Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water. Sensors, 2020, 20, 6085.	3.8	12
23	Hydrogels: From Controlled Release to a New Bait Delivery for Insect Pest Management. Journal of Economic Entomology, 2020, 113, 2061-2068.	1.8	24
24	Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. Sensors, 2020, 20, 4811.	3.8	16
25	Asymptomatic Diagnosis of Huanglongbing Disease Using Metalloporphyrin Functionalized Single-Walled Carbon Nanotubes Sensor Arrays. Frontiers in Chemistry, 2020, 8, 362.	3.6	5
26	Biodegradable alginate hydrogel bait delivery system effectively controls high-density populations of Argentine ant in commercial citrus. Journal of Pest Science, 2020, 93, 1031-1042.	3.7	21
27	Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees. Sensors, 2019, 19, 4795.	3.8	20
28	Field effect transistor based on proton conductive metal organic framework (CuBTC). Journal Physics D: Applied Physics, 2019, 52, 335105.	2.8	27
29	Synthesis of Formate from CO ₂ Gas Catalyzed by an O ₂ -Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase. Biochemistry, 2019, 58, 1861-1868.	2.5	36
30	Electrochemical Biosensor for Rapid Detection of Viable Bacteria and Antibiotic Screening. Journal of Analysis and Testing, 2019, 3, 117-122.	5.1	13
31	MoS ₂ -Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO ₂ Gas Detection. ACS Nano, 2019, 13, 3196-3205.	14.6	349
32	Functionalized Carbon Nanotubes for Detection of Volatile Organic Pollutant. , 2019, , .		2
33	A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosensors and Bioelectronics, 2019, 130, 367-373.	10.1	54
34	Graphene nanogap electrodes in electrical biosensing. Biosensors and Bioelectronics, 2019, 126, 838-844.	10.1	14
35	MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon, 2019, 142, 504-512.	10.3	41
36	Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein. Biosensors and Bioelectronics, 2019, 129, 254-259.	10.1	29

#	Article	IF	CITATIONS
37	Electroâ€oxidized Monolayer CVD Graphene Film Transducer for Ultrasensitive Impedimetric DNA Biosensor. Electroanalysis, 2018, 30, 1791-1800.	2.9	22
38	Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry, 2018, 121, 185-190.	4.6	47
39	Calixarene-functionalized single-walled carbon nanotubes for sensitive detection of volatile amines. Sensors and Actuators B: Chemical, 2018, 268, 115-122.	7.8	20
40	Point-of-Use Nanobiosensor for Detection of Dengue Virus NS1 Antigen in Adult <i>Aedes aegypti</i> Potential Tool for Improved Dengue Surveillance. Analytical Chemistry, 2018, 90, 679-684.	6.5	33
41	Highly active spore biocatalyst by selfâ€assembly of coâ€expressed anchoring scaffoldin and multimeric enzyme. Biotechnology and Bioengineering, 2018, 115, 557-564.	3.3	18
42	Characterisation of the heterojunction microstructure for electrodeposited vertical ZnO nanorods on CVD-graphene. Materials Research Express, 2018, 5, 085031.	1.6	6
43	Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors, 2018, 8, 63.	4.7	9
44	Salivary Detection of Dengue Virus NS1 Protein with a Label-Free Immunosensor for Early Dengue Diagnosis. Sensors, 2018, 18, 2641.	3.8	23
45	Singleâ€walled Carbon Nanotubeâ€Calixarene Based Chemiresistor for Volatile Organic Compounds. Electroanalysis, 2018, 30, 2077-2084.	2.9	16
46	Tuning Coating Thickness of Iron Tetraphenyl Porphyrin on Single Walled Carbon Nanotubes by Annealing: Effect on Benzene Sensing Performance. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700956.	1.8	9
47	A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors and Bioelectronics, 2017, 91, 811-816.	10.1	82
48	Monitoring of microbial cell viability using nanostructured electrodes modified with Graphene/Alumina nanocomposite. Biosensors and Bioelectronics, 2017, 91, 857-862.	10.1	31
49	Highly sensitive detection of Cr(VI) by reduced graphene oxide chemiresistor and 1,4-dithiothreitol functionalized Au nanoparticles. Sensors and Actuators B: Chemical, 2017, 247, 265-272.	7.8	38
50	Graphene based biosensors for healthcare. Journal of Materials Research, 2017, 32, 2905-2929.	2.6	45
51	Development of an alginate hydrogel to deliver aqueous bait for pest ant management. Pest Management Science, 2017, 73, 2028-2038.	3.4	31
52	Sporeâ€displayed enzyme cascade with tunable stoichiometry. Biotechnology Progress, 2017, 33, 383-389.	2.6	17
53	Cover Image, Volume 73, Issue 10. Pest Management Science, 2017, 73, i-i.	3.4	0
54	Raman spectra of twisted CVD bilayer graphene. Carbon, 2017, 123, 302-306.	10.3	50

#	Article	IF	Citations
55	Carbon allotropes as sensors for environmental monitoring. Current Opinion in Electrochemistry, 2017, 3, 106-113.	4.8	48
56	Graphene-Based Biosensors and Their Applications in Biomedical and Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2017, , 261-290.	0.5	11
57	Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). Journal of Biological Chemistry, 2017, 292, 16872-16879.	3.4	88
58	Potassium Iodide-Functionalized Polyaniline Nanothin Film Chemiresistor for Ultrasensitive Ozone Gas Sensing. Polymers, 2017, 9, 80.	4.5	7
59	A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Frontiers in Microbiology, 2017, 8, 2041.	3.5	40
60	Platinum nanoparticles-single-walled carbon nanotubes hybrid based chemiresistive sensor array for myoglobin detection. Materials Research Express, 2016, 3, 035006.	1.6	3
61	High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection. Applied Physics Letters, 2016, 109, 243504.	3.3	13
62	Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase. Bioelectrochemistry, 2016, 111, 57-61.	4.6	16
63	An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples. Journal of Hazardous Materials, 2016, 320, 226-233.	12.4	65
64	Engineering Soluble Human Paraoxonase 2 for Quorum Quenching. ACS Chemical Biology, 2016, 11, 3122-3131.	3.4	17
65	Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale, 2016, 8, 14608-14616.	5.6	187
66	An oligonucleotide-functionalized carbon nanotube chemiresistor for sensitive detection of mercury in saliva. Analyst, The, 2016, 141, 2756-2760.	3.5	22
67	Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC - Trends in Analytical Chemistry, 2016, 79, 222-232.	11.4	128
68	Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere, 2016, 143, 85-98.	8.2	170
69	Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Advanced Science, 2015, 2, 1500048.	11.2	111
70	Graphene hybrids: synthesis strategies and applications in sensors and sensitized solar cells. Frontiers in Chemistry, 2015, 3, 38.	3.6	67
71	Chemiresistive sensor based on polythiophene-modified single-walled carbon nanotubes for detection of NO ₂ . Modern Physics Letters B, 2015, 29, 1540046.	1.9	23
72	Bioelectrochemistry of Heme Peptide at Seamless Three-Dimensional Carbon Nanotubes/Graphene Hybrid Films for Highly Sensitive Electrochemical Biosensing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3647-3654.	8.0	39

#	Article	IF	CITATIONS
73	Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples. Environmental Science & Environment	10.0	56
74	A miniature chemiresistor sensor for carbon dioxide. Analytica Chimica Acta, 2015, 874, 54-58.	5 . 4	43
75	Conducting polyaniline nanowire electrode junction. Modern Physics Letters B, 2015, 29, 1540036.	1.9	3
76	Volatile Organic Compounds. Nanostructure Science and Technology, 2015, , 1023-1046.	0.1	1
77	Fe nanoparticle tailored poly(N-methyl pyrrole) nanowire matrix: a CHEMFET study from the perspective of discrimination among electron donating analytes. Journal Physics D: Applied Physics, 2015, 48, 195301.	2.8	5
78	Glucose sensor based on conducting polyaniline nanowire electrode junction. Modern Physics Letters B, 2015, 29, 1540045.	1.9	2
79	Methanol tolerant, high performance, noble metal free electrocatalyst developed from polyaniline and ferric chloride for the oxygen reduction reaction. RSC Advances, 2015, 5, 92648-92655.	3.6	15
80	Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides. Applied Physics Letters, 2015, 107, .	3.3	13
81	Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis. Langmuir, 2015, 31, 13054-13061.	3 . 5	61
82	Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease. Applied Physics Letters, 2014, 105, 213701.	3.3	12
83	Conducting polymer functionalized single-walled carbon nanotube based chemiresistive biosensor for the detection of human cardiac myoglobin. Applied Physics Letters, 2014, 105, .	3.3	17
84	Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B: Chemical, 2014, 194, 255-259.	7.8	54
85	Nonenzymatic Glucose Sensor Based on Platinum Nanoflowers Decorated Multiwalled Carbon Nanotubesâ€Graphene Hybrid Electrode. Electroanalysis, 2014, 26, 103-108.	2.9	76
86	Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosensors and Bioelectronics, 2014, 58, 145-152.	10.1	76
87	Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. Talanta, 2014, 123, 109-114.	5. 5	65
88	Single-Walled Carbon Nanotube–Poly(porphyrin) Hybrid for Volatile Organic Compounds Detection. Journal of Physical Chemistry C, 2014, 118, 1602-1610.	3.1	51
89	Quantitative assessment of in vivo HIV protease activity using genetically engineered QDâ€based FRET probes. Biotechnology and Bioengineering, 2014, 111, 1082-1087.	3.3	12
90	Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sensors and Actuators B: Chemical, 2014, 205, 363-370.	7.8	43

#	Article	IF	CITATIONS
91	Selective Discrimination among Benzene, Toluene, and Xylene: Probing Metalloporphyrin-Functionalized Single-Walled Carbon Nanotube-Based Field Effect Transistors. Journal of Physical Chemistry C, 2014, 118, 24034-24041.	3.1	43
92	Poly(3-aminophenylboronic acid)-functionalized carbon nanotubes-based chemiresistive sensors for detection of sugars. Analyst, The, 2014, 139, 3077-3082.	3.5	38
93	Ultrasensitive Electrochemical Immunosensor Based on Pt Nanoparticle–Graphene Composite. Applied Biochemistry and Biotechnology, 2014, 174, 971-983.	2.9	10
94	Bactericidal activity of elastin-like polypeptide biopolymer with polyhistidine domain and silver. Colloids and Surfaces B: Biointerfaces, 2014, 119, 66-70.	5.0	11
95	A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification. Analytical Biochemistry, 2014, 457, 19-23.	2.4	62
96	Affinity chemiresistor sensor for sugars. Talanta, 2014, 128, 473-479.	5.5	6
97	Protein functionalized Pt nanoparticles-conducting polymer nanocomposite film: Characterization and immunosensor application. Polymer, 2014, 55, 4003-4011.	3.8	16
98	Nanothin Polyaniline Film for Highly Sensitive Chemiresistive Gas Sensing. Electroanalysis, 2013, 25, 1439-1445.	2.9	27
99	Poly(o-toluidine) Nanowires Based Organic Field Effect Transistors: A Study on Influence of Anionic Size of Dopants and SWNTs as a Dopant. Journal of Physical Chemistry C, 2013, 117, 15414-15420.	3.1	3
100	Electronic Detection of MicroRNA at Attomolar Level with High Specificity. Analytical Chemistry, 2013, 85, 8061-8064.	6.5	98
101	Use of Flow Cytometry for Rapid, Quantitative Detection of Poliovirus-Infected Cells via TAT Peptide-Delivered Molecular Beacons. Applied and Environmental Microbiology, 2013, 79, 696-700.	3.1	9
102	Platinum nanoflowers decorated three-dimensional grapheneâ€"carbon nanotubes hybrid with enhanced electrocatalytic activity. Journal of Power Sources, 2013, 223, 23-29.	7.8	49
103	Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection. RSC Advances, 2013, 3, 228-235.	3.6	64
104	Organic field-effect transistors: predictive control on performance parameters. Journal Physics D: Applied Physics, 2013, 46, 495110.	2.8	7
105	Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene. Materials Letters, 2013, 96, 38-41.	2.6	22
106	Hexavalent chromium removal mechanism using conducting polymers. Journal of Hazardous Materials, 2013, 252-253, 99-106.	12.4	102
107	Hybrid tin oxide-SWNT nanostructures based gas sensor. Electrochimica Acta, 2013, 92, 484-490.	5. 2	57
108	Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring. Applied Biochemistry and Biotechnology, 2013, 170, 1011-1025.	2.9	21

#	Article	IF	Citations
109	Graphene and carbon nanotube–graphene hybrid nanomaterials for human embryonic stem cell culture. Materials Letters, 2013, 92, 122-125.	2.6	44
110	Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation, 2013, 24, 295-303.	3.0	33
111	Label-free chemiresistive biosensor for mercury (II) based on single-walled carbon nanotubes and structure-switching DNA. Applied Physics Letters, 2013, 102, 13701.	3.3	40
112	A chemiresistive sensor based on conducting polymer/SWNT composite nanofibrillar matrix—effect of 100 MeV O ¹⁶ ion irradiation on gas sensing properties. Smart Materials and Structures, 2013, 22, 035004.	3.5	12
113	Detection of RNA Viruses: Current Technologies and Future Perspectives. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 125-137.	0.9	22
114	Single-Walled Carbon Nanotubes Based Chemicapacitive Sensors. Journal of Nanoscience and Nanotechnology, 2012, 12, 1517-1520.	0.9	3
115	Controlled functionalization of single-walled carbon nanotubes for enhanced ammonia sensing: a comparative study. Journal Physics D: Applied Physics, 2012, 45, 355305.	2.8	33
116	Selective recognition of xylene isomers using ZnO–SWNTs hybrid gas sensors. Analyst, The, 2012, 137, 2549.	3.5	13
117	Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon. Journal of Physical Chemistry C, 2012, 116, 9202-9208.	3.1	15
118	Graphene Nanomesh As Highly Sensitive Chemiresistor Gas Sensor. Analytical Chemistry, 2012, 84, 8171-8178.	6.5	226
119	Porphyrin-Functionalized Single-Walled Carbon Nanotube Chemiresistive Sensor Arrays for VOCs. Journal of Physical Chemistry C, 2012, 116, 3845-3850.	3.1	125
120	Hybrid ZnO/SWNT Nanostructures Based Gas Sensor. Electroanalysis, 2012, 24, 1613-1620.	2.9	20
121	Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresource Technology, 2012, 117, 86-91.	9.6	56
122	Application of displacement principle for detecting heavy metal ions and EDTA using microcantilevers. Sensors and Actuators B: Chemical, 2012, 161, 203-208.	7.8	21
123	Electronic-nose for detecting environmental pollutants: signal processing and analog front-end design. Analog Integrated Circuits and Signal Processing, 2012, 70, 15-32.	1.4	21
124	Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate. Chemical Communications, 2011, 47, 3793.	4.1	36
125	Phylogenetic Diversity and Metabolic Potential of Activated Sludge Microbial Communities in Full-Scale Wastewater Treatment Plants. Environmental Science & Environmental Scie	10.0	166
126	A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. Chemical Communications, 2011, 47, 5259.	4.1	44

#	Article	IF	CITATIONS
127	Sensitive Detection of Elemental Mercury Vapor by Gold-Nanoparticle-Decorated Carbon Nanotube Sensors. Journal of Physical Chemistry C, 2011, 115, 13927-13931.	3.1	59
128	Estimation of Enzyme Kinetic Parameters of Cell Surface-displayed Organophosphorus Hydrolase and Construction of a Biosensing System for Organophosphorus Compounds. Analytical Sciences, 2011, 27, 823-826.	1.6	12
129	Anchorage of GFP fusion on the cell surface of Pseudomonas putida. Biodegradation, 2011, 22, 51-61.	3.0	8
130	Microbial Biosensors for Organophosphate Pesticides. Applied Biochemistry and Biotechnology, 2011, 165, 687-699.	2.9	41
131	Single Conducting Polymer Nanowire Based Sequenceâ€Specific, Baseâ€Pairâ€Length Dependant Labelâ€free DNA Sensor. Electroanalysis, 2011, 23, 371-379.	2.9	38
132	Selective and Rapid Room Temperature Detection of H ₂ S Using Gold Nanoparticle Chain Arrays. Electroanalysis, 2011, 23, 2623-2628.	2.9	32
133	Gas Sensing Mechanism of Gold Nanoparticles Decorated Singleâ€Walled Carbon Nanotubes. Electroanalysis, 2011, 23, 2687-2692.	2.9	43
134	Label-free, chemiresistor immunosensor for stress biomarker cortisol in saliva. Biosensors and Bioelectronics, 2011, 26, 4382-4386.	10.1	94
135	Conducting polymer nanowires-based label-free biosensors. Current Opinion in Biotechnology, 2011, 22, 502-508.	6.6	71
136	The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon, 2011, 49, 3789-3795.	10.3	35
137	Room temperature detection of NO2 using InSb nanowire. Applied Physics Letters, 2011, 99, .	3.3	32
138	ZnS nanocrystals decorated single-walled carbon nanotube based chemiresistive label-free DNA sensor. Applied Physics Letters, 2011, 98, 13701.	3.3	26
139	Photo-induced charge transport in ZnS nanocrystals decorated single walled carbon nanotube field-effect transistor. Applied Physics Letters, 2011, 99, 173110.	3.3	13
140	Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in <i>E. coli</i> . Biotechnology and Bioengineering, 2010, 105, 780-785.	3.3	32
141	Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP. Biotechnology Journal, 2010, 5, 515-519.	3.5	10
142	Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosensors and Bioelectronics, 2010, 25, 2309-2312.	10.1	59
143	Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives. Biosensors and Bioelectronics, 2010, 26, 1297-1301.	10.1	76
144	Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnology Letters, 2010, 32, 655-659.	2.2	25

#	Article	IF	CITATIONS
145	Electrical and Sensing Properties of Singleâ€Walled Carbon Nanotubes Network: Effect of Alignment and Selective Breakdown. Electroanalysis, 2010, 22, 99-105.	2.9	37
146	Conducting polymer 1-dimensional nanostructures for FET sensors. Thin Solid Films, 2010, 519, 964-973.	1.8	40
147	Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosensors and Bioelectronics, 2010, 26, 1437-1441.	10.1	123
148	Cotranslocation of Methyl Parathion Hydrolase to the Periplasm and of Organophosphorus Hydrolase to the Cell Surface of <i>Escherichia coli</i> by the Tat Pathway and Ice Nucleation Protein Display System. Applied and Environmental Microbiology, 2010, 76, 434-440.	3.1	34
149	Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals. Applied Physics Letters, 2010, 97, 123703.	3.3	15
150	Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. Journal of Materials Chemistry, 2010, 20, 3131.	6.7	138
151	Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. Nanotechnology, 2010, 21, 075502.	2.6	57
152	Genetic Engineering of <i>Stenotrophomonas</i> Strain YC-1 To Possess a Broader Substrate Range for Organophosphates. Journal of Agricultural and Food Chemistry, 2010, 58, 6762-6766.	5.2	19
153	Twin-Arginine Translocation of Methyl Parathion Hydrolase in <i>Bacillus subtilis</i> . Environmental Science & Environmental S	10.0	17
154	Nano Aptasensor for Protective Antigen Toxin of Anthrax. Analytical Chemistry, 2010, 82, 2042-2047.	6.5	95
155	Sensitive Detection of H ₂ S Using Gold Nanoparticle Decorated Single-Walled Carbon Nanotubes. Analytical Chemistry, 2010, 82, 250-257.	6.5	180
156	Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO2nanowires by the Kirkendall effect. Nanotechnology, 2010, 21, 295601.	2.6	24
157	Single-Walled Carbon Nanotube-Based Chemiresistive Affinity Biosensors for Small Molecules: Ultrasensitive Glucose Detection. Journal of the American Chemical Society, 2010, 132, 5024-5026.	13.7	149
158	Effect of Aspect Ratio (Length:Diameter) on a Single Polypyrrole Nanowire FET Device. Journal of Physical Chemistry C, 2010, 114, 13375-13380.	3.1	40
159	Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals. Chemical Communications, 2010, 46, 1473.	4.1	31
160	Label-Free Chemiresistive Immunosensors for Viruses. Environmental Science & E	10.0	44
161	Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers. Analyst, The, 2010, 135, 2637.	3.5	47
162	Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chemical Communications, 2010, 46, 3914.	4.1	72

#	Article	IF	CITATIONS
163	Magnetically Assembled Multisegmented Nanowires and Their Applications. Electroanalysis, 2009, 21, 61-67.	2.9	62
164	Optimization of a wholeâ€cell cadmium sensor with a toggle gene circuit. Biotechnology Progress, 2009, 25, 898-903.	2.6	53
165	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosensors and Bioelectronics, 2009, 24, 1451-1455.	10.1	33
166	Redox properties of engineered ruthenium myoglobin. Bioelectrochemistry, 2009, 75, 182-188.	4.6	12
167	Simultaneous Degradation of Organophosphates and 4-Substituted Phenols by Stenotrophomonas Species LZ-1 with Surface-Displayed Organophosphorus Hydrolase. Journal of Agricultural and Food Chemistry, 2009, 57, 6171-6177.	5.2	24
168	Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Applied Physics Letters, 2009, 94, .	3.3	181
169	Real-time molecular methods to detect infectious viruses. Seminars in Cell and Developmental Biology, 2009, 20, 49-54.	5.0	33
170	Size-controlled electrochemical synthesis and properties of SnO ₂ nanotubes. Nanotechnology, 2009, 20, 185602.	2.6	79
171	A real-time monitoring system for diesel and gasoline exhaust exposure. , 2009, , .		3
172	Single Conducting Polymer Nanowire Chemiresistive Label-Free Immunosensor for Cancer Biomarker. Analytical Chemistry, 2009, 81, 2168-2175.	6.5	165
173	Molecular beacons: A real-time polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. Analytica Chimica Acta, 2008, 614, 208-212.	5.4	56
174	Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity. Macromolecular Rapid Communications, 2008, 29, 832-838.	3.9	72
175	Surface display of MPH onPseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnology and Bioengineering, 2008, 99, 30-37.	3.3	50
176	Presentation of functional organophosphorus hydrolase fusions on the surface of ⟨i⟩Escherichia coli⟨/i⟩ by the AIDAâ€I autotransporter pathway. Biotechnology and Bioengineering, 2008, 99, 485-490.	3.3	35
177	Enhanced arsenic accumulation by engineered yeast cells expressing <i>Arabidopsis thaliana</i> phytochelatin synthase. Biotechnology and Bioengineering, 2008, 99, 333-340.	3.3	47
178	Microbial Synthesis of CdS Nanocrystals in Genetically Engineered ⟨i⟩E.â€coli⟨/i⟩. Angewandte Chemie - International Edition, 2008, 47, 5186-5189.	13.8	125
179	Bioremediation: environmental clean-up through pathway engineering. Current Opinion in Biotechnology, 2008, 19, 437-444.	6.6	159
180	Electrodeposition of maghemite (\hat{I}^3 -Fe2O3) nanoparticles. Chemical Engineering Journal, 2008, 139, 208-212.	12.7	73

#	Article	IF	Citations
181	Improved Degradation of Organophosphorus Nerve Agents and p-Nitrophenol by Pseudomonas putida JS444 with Surface-Expressed Organophosphorus Hydrolase. Biotechnology Progress, 2008, 21, 678-681.	2.6	36
182	Synthesis and characterization of cadmium telluride nanowire. Nanotechnology, 2008, 19, 325711.	2.6	52
183	Recent biosensing developments in environmental security. Journal of Environmental Monitoring, 2008, 10, 703.	2.1	75
184	Versatile microbial surface-display for environmental remediation and biofuels production. Trends in Microbiology, 2008, 16, 181-188.	7.7	104
185	Cell Surface Display of Functional Macromolecule Fusions on Escherichia coli for Development of an Autofluorescent Whole-Cell Biocatalyst. Environmental Science & Eamp; Technology, 2008, 42, 6105-6110.	10.0	28
186	Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. Applied Microbiology and Biotechnology, 2008, 79, 511-518.	3.6	10
187	Development of a bioluminescent whole-cell biocatalyst by displaying functional fusions on the surface of Escherichia coli. Journal of Biotechnology, 2008, 136, S689-S690.	3.8	0
188	Highly Selective and Rapid Arsenic Removal by Metabolically Engineered <i>Escherichia coli</i> Cells Expressing <i>Fucus vesiculosus</i> Metallothionein. Applied and Environmental Microbiology, 2008, 74, 2924-2927.	3.1	72
189	Visualizing the dynamics of viral replication in living cells via Tat peptide delivery of nuclease-resistant molecular beacons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17522-17525.	7.1	64
190	Detection of Hepatitis A Virus by Using a Combined Cell Culture-Molecular Beacon Assay. Applied and Environmental Microbiology, 2008, 74, 2239-2243.	3.1	30
191	Development of an Autofluorescent Whole-Cell Biocatalyst by Displaying Dual Functional Moieties on Escherichia coli Cell Surfaces and Construction of a Coculture with Organophosphate-Mineralizing Activity. Applied and Environmental Microbiology, 2008, 74, 7733-7739.	3.1	23
192	Maskless electrodeposited contact for conducting polymer nanowires. Applied Physics Letters, 2008, 92, .	3.3	20
193	Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes. Applied Physics Letters, 2007, 90, 073901.	3.3	44
194	Bacteria Metabolically Engineered for Enhanced Phytochelatin Production and Cadmium Accumulation. Applied and Environmental Microbiology, 2007, 73, 6317-6320.	3.1	104
195	Elastinâ°'Calmodulin Scaffold for Protein Microarray Fabrication. Langmuir, 2007, 23, 2277-2279.	3.5	9
196	Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. Talanta, 2007, 74, 370-375.	5.5	60
197	Genetic Engineering of Self-Assembled Protein Hydrogel Based on Elastin-like Sequences with Metal Binding Functionality. Biomacromolecules, 2007, 8, 3736-3739.	5.4	45
198	Field-Effect Transistors Based on Single Nanowires of Conducting Polymers. Journal of Physical Chemistry C, 2007, 111, 5218-5221.	3.1	77

#	Article	IF	Citations
199	Cadmium removal from contaminated soil by thermally responsive elastin (ELPEC20) biopolymers. Biotechnology and Bioengineering, 2007, 98, 349-355.	3.3	26
200	Single-Walled Carbon Nanotube Based Real-Time Organophosphate Detector. Electroanalysis, 2007, 19, 616-619.	2.9	38
201	In Situ Fabrication of Single Poly(methyl pyrrole) Nanowire. Electroanalysis, 2007, 19, 793-797.	2.9	21
202	Single Polypyrrole Nanowire Ammonia Gas Sensor. Electroanalysis, 2007, 19, 2125-2130.	2.9	163
203	DNA Assisted Assembly of Multisegmented Nanowires. Electroanalysis, 2007, 19, 2287-2293.	2.9	25
204	Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 2007, 22, 2636-2642.	10.1	94
205	Affinity purification of plasmid DNA by temperature-triggered precipitation. Nature Protocols, 2007, 2, 1263-1268.	12.0	17
206	Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (B1). Applied Biochemistry and Biotechnology, 2007, 136, 233-241.	2.9	29
207	Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Applied Biochemistry and Biotechnology, 2007, 136, 243-250.	2.9	52
208	Fabrication of Antibody Arrays Using Thermally Responsive Elastin Fusion Proteins. Journal of the American Chemical Society, 2006, 128, 676-677.	13.7	73
209	V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 2006, 78, 331-336.	6.5	146
210	Simple Conjugation and Purification of Quantum Dotâ 'Antibody Complexes Using a Thermally Responsive Elastin-Protein L Scaffold As Immunofluorescent Agents. Journal of the American Chemical Society, 2006, 128, 14756-14757.	13.7	52
211	Controlled assembly of multi-segment nanowires by histidine-tagged peptides. Nanotechnology, 2006, 17, 3375-3379.	2.6	23
212	Biosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode. Sensors, 2006, 6, 466-472.	3.8	33
213	Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnology Progress, 2006, 22, 939-943.	2.6	61
214	Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp Analytica Chimica Acta, 2006, 568, 217-221.	5.4	70
215	Microbial biosensors. Analytica Chimica Acta, 2006, 568, 200-210.	5.4	403
216	Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. International Biodeterioration and Biodegradation, 2006, 58, 70-76.	3.9	52

#	Article	IF	Citations
217	Nanowire-Based Electrochemical Biosensors. Electroanalysis, 2006, 18, 533-550.	2.9	439
218	Fabrication and Properties of Conducting Polypyrrole/SWNT-PABS Composite Films and Nanotubes. Electroanalysis, 2006, 18, 1047-1054.	2.9	48
219	Engineering Plant-Microbe Symbiosis for Rhizoremediation of Heavy Metals. Applied and Environmental Microbiology, 2006, 72, 1129-1134.	3.1	261
220	Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Protein Engineering, Design and Selection, 2006, 19, 99-105.	2.1	52
221	Conducting Polymer Nanowire-Based BioFET for Label-Free Detection. Optical Science and Engineering, 2006, , 133-150.	0.1	0
222	Electrochemical and optical bioassays of nerve agents based on the organophosphorus-hydrolase mediated growth of cupric ferrocyanide nanoparticles. Electrochemistry Communications, 2005, 7, 1371-1374.	4.7	13
223	Aqueous sol–gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosensors and Bioelectronics, 2005, 20, 1433-1437.	10.1	85
224	Amperometric microbial biosensor for p-nitrophenol using Moraxella spmodified carbon paste electrode. Biosensors and Bioelectronics, 2005, 21, 523-527.	10.1	147
225	Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta, 2005, 530, 185-189.	5.4	251
226	A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. Electroanalysis, 2005, 17, 54-58.	2.9	220
227	Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic. Angewandte Chemie - International Edition, 2005, 44, 6009-6012.	13.8	368
228	Temperature-triggered purification of antibodies. Biotechnology and Bioengineering, 2005, 90, 373-379.	3.3	49
229	Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. Biotechnology and Bioengineering, 2005, 91, 379-386.	3.3	35
230	Environmental biotechnology: Challenges and opportunities for chemical engineers. AICHE Journal, 2005, 51, 690-695.	3.6	31
231	Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 554-560.	3.0	55
232	Customizable Biopolymers for Heavy Metal Remediation. Journal of Nanoparticle Research, 2005, 7, 517-523.	1.9	38
233	Visualization and Detection of Infectious Coxsackievirus Replication Using a Combined Cell Culture-Molecular Beacon Assay. Applied and Environmental Microbiology, 2005, 71, 8397-8401.	3.1	19
234	Real-Time Nucleic Acid Sequence-Based Amplification Assay for Detection of Hepatitis A Virus. Applied and Environmental Microbiology, 2005, 71, 7113-7116.	3.1	58

#	Article	IF	Citations
235	Bioaffinity Sensing Using Biologically Functionalized Conducting-Polymer Nanowire. Journal of the American Chemical Society, 2005, 127, 496-497.	13.7	385
236	Genetically Engineered Elastin-Protein A Fusion as a Universal Platform for Homogeneous, Phase-separation Immunoassay. Analytical Chemistry, 2005, 77, 2318-2322.	6.5	52
237	Direct Determination ofp-Nitrophenyl Substituent Organophosphorus Nerve Agents Using a RecombinantPseudomonas putidaJS444-Modified Clark Oxygen Electrode. Journal of Agricultural and Food Chemistry, 2005, 53, 524-527.	5.2	48
238	Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers. Environmental Science & Environ	10.0	121
239	Highly Sensitive and Selective Amperometric Microbial Biosensor for Direct Determination ofp-Nitrophenyl-Substituted Organophosphate Nerve Agents. Environmental Science & Emp; Technology, 2005, 39, 8853-8857.	10.0	90
240	Altering the Substrate Specificity of Organophosphorus Hydrolase for Enhanced Hydrolysis of Chlorpyrifos. Applied and Environmental Microbiology, 2004, 70, 4681-4685.	3.1	106
241	Combined Immunomagnetic Separation-Molecular Beacon-Reverse Transcription-PCR Assay for Detection of Hepatitis A Virus from Environmental Samples. Applied and Environmental Microbiology, 2004, 70, 4371-4374.	3.1	50
242	Bioremediation of Organophosphorus Pesticides by Surface-Expressed Carboxylesterase from Mosquito on Escherichia Coli. Biotechnology Progress, 2004, 20, 1567-1571.	2.6	27
243	Analytical applications of planar bilayer lipid membranes. Analytical and Bioanalytical Chemistry, 2004, 379, 347-350.	3.7	17
244	Affinity purification of plasmid DNA by temperature-triggered precipitation. Biotechnology and Bioengineering, 2004, 85, 293-297.	3.3	27
245	Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents withp-nitrophenyl substituent. Biotechnology and Bioengineering, 2004, 85, 706-713.	3.3	34
246	A Tubulin-Based Quantitative Assay for Taxol (Paclitaxel) with Enzyme Channeling Sensing. Electroanalysis, 2004, 16, 688-690.	2.9	2
247	Ormosil Encapsulated Pyrroloquinoline Quinone-Modified Electrochemical Sensor for Thiols. Electroanalysis, 2004, 16, 1938-1943.	2.9	16
248	Arthrobacter sp. JS443-Based Whole Cell Amperometric Biosensor for p-Nitrophenol. Electroanalysis, 2004, 16, 2030-2034.	2.9	19
249	Vapor and liquid phase detection of cyanide on a microchip. Electrophoresis, 2004, 25, 116-122.	2.4	21
250	Microchip enzymatic assay of organophosphate nerve agents. Analytica Chimica Acta, 2004, 505, 183-187.	5.4	57
251	Microchip Capillary Electrophoresis with Electrochemical Detection of Thiol-Containing Degradation Products of V-Type Nerve Agents. Analytical Chemistry, 2004, 76, 4721-4726.	6.5	59
252	Cadmium Removal from Contaminated Soil by Tunable Biopolymers. Environmental Science & Emp; Technology, 2004, 38, 3148-3152.	10.0	48

#	Article	IF	Citations
253	Enhanced Arsenic Accumulation in Engineered Bacterial Cells Expressing ArsR. Applied and Environmental Microbiology, 2004, 70, 4582-4587.	3.1	181
254	Engineering of Improved Biocatalysts in Bioremediation. Soil Biology, 2004, , 235-250.	0.8	0
255	Individually Addressable Conducting Polymer Nanowires Array. Nano Letters, 2004, 4, 1237-1239.	9.1	227
256	Carbon Nanotubesâ€Modified Screenâ€Printed Electrodes for Chemical Sensors and Biosensors. Analytical Letters, 2004, 37, 3185-3204.	1.8	74
257	Electrochemically grown single-nanowire sensors. , 2004, , .		2
258	Biological Detoxification of Organophosphate Pesticides. ACS Symposium Series, 2003, , 25-36.	0.5	2
259	A Microbial Biosensor forp-Nitrophenol UsingArthrobacter Sp Electroanalysis, 2003, 15, 1160-1164.	2.9	33
260	Thermally triggered purification and immobilization of elastin-OPH fusions. Biotechnology and Bioengineering, 2003, 81, 74-79.	3.3	66
261	One-step metal-affinity purification of histidine-tagged proteins by temperature-triggered precipitation. Biotechnology and Bioengineering, 2003, 82, 605-611.	3.3	49
262	An immunoassay for atrazine using tunable immunosorbent. Analytical Biochemistry, 2003, 322, 251-256.	2.4	28
263	A tubulin-based fluorescent polarization assay for paclitaxel. Analytical Biochemistry, 2003, 321, 44-49.	2.4	11
264	Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosensors and Bioelectronics, 2003, 18, 547-553.	10.1	120
265	Cell Surface Display of Organophosphorus Hydrolase in Pseudomonas putida Using an Ice-Nucleation Protein Anchor. Biotechnology Progress, 2003, 19, 1612-1614.	2.6	44
266	Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions. Biotechnology Progress, 2003, 19, 1812-1815.	2.6	33
267	A capacitive field-effect sensor for the direct determination of organophosphorus pesticides. Sensors and Actuators B: Chemical, 2003, 91, 92-97.	7.8	40
268	A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sensors and Actuators B: Chemical, 2003, 95, 291-296.	7.8	76
269	Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosensors and Bioelectronics, 2003, 18, 255-260.	10.1	72
270	A Temperature Responsive Biopolymer for Mercury Remediation. Environmental Science & Emp; Technology, 2003, 37, 4457-4462.	10.0	72

#	ARTICLE	IF	CITATIONS
271	A novel bioassay for screening and quantification of taxanes. Chemical Communications, 2003, , 1188-1189.	4.1	2
272	Enhanced Mercury Biosorption by Bacterial Cells with Surface-Displayed MerR. Applied and Environmental Microbiology, 2003, 69, 3176-3180.	3.1	122
273	Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development. Sensors, 2003, 3, 119-127.	3.8	24
274	Feldeffekt-Enzymsensor zur Detektion von Pestiziden (Field-effect Enzyme Sensor for the Detection of) Tj ETQq	0 0 0 _{rg} BT 0.7	/Oyerlock 10
275	Bacterial Cell Surface Display of Organophosphorus Hydrolase for Selective Screening of Improved Hydrolysis of Organophosphate Nerve Agents. Applied and Environmental Microbiology, 2002, 68, 2026-2030.	3.1	175
276	Specific Adhesion to Cellulose and Hydrolysis of Organophosphate Nerve Agents by a Genetically Engineered Escherichia coli Strain with a Surface-Expressed Cellulose-Binding Domain and Organophosphorus Hydrolase. Applied and Environmental Microbiology, 2002, 68, 1684-1689.	3.1	59
277	Enhanced Bioaccumulation of Heavy Metals by Bacterial Cells with Surface-Displayed Synthetic Phytochelatins. ACS Symposium Series, 2002, , 411-418.	0.5	2
278	Single-Channel Microchip for Fast Screening and Detailed Identification of Nitroaromatic Explosives or Organophosphate Nerve Agents. Analytical Chemistry, 2002, 74, 1187-1191.	6.5	148
279	Measurements of Chemical Warfare Agent Degradation Products Using an Electrophoresis Microchip with Contactless Conductivity Detector. Analytical Chemistry, 2002, 74, 6121-6125.	6.5	131
280	Heavy Metal Removal by Novel CBD-EC20 Sorbents Immobilized on Cellulose. Biomacromolecules, 2002, 3, 462-465.	5.4	32
281	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 2002, 14, 273-276.	2.9	57
282	Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. Journal of Inorganic Biochemistry, 2002, 88, 223-227.	3.5	73
283	Microbial biosensor for p-nitrophenol using Moraxella sp Analytica Chimica Acta, 2002, 470, 79-86.	5.4	36
284	Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins. Analytica Chimica Acta, 2002, 469, 197-203.	5.4	58
285	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 2002, 14, 273.	2.9	1
286	Capillary Electrophoresis Microchips for Separation and Detection of Organophosphate Nerve Agents. Analytical Chemistry, 2001, 73, 1804-1808.	6.5	144
287	Flow Injection Amperometric Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Environmental Science &	10.0	111
288	Biosensors for direct determination of organophosphate pesticides. Biosensors and Bioelectronics, 2001, 16, 225-230.	10.1	348

#	Article	IF	Citations
289	Use of Real-Time Polymerase Chain Reaction and Molecular Beacons for the Detection of Escherichia coli O157:H7. Analytical Biochemistry, 2001, 289, 281-288.	2.4	131
290	Simultaneous degradation of organophosphorus pesticides and pâ€nitrophenol by a genetically engineered Moraxella sp. with surfaceâ€expressed organophosphorus hydrolase. Biotechnology and Bioengineering, 2001, 76, 318-324.	3.3	137
291	Tunable Biopolymers for Heavy Metal Removal. Macromolecules, 2001, 34, 2257-2261.	4.8	105
292	Coimmobilization of Urease and Glutamate Dehydrogenase in Electrochemically Prepared Polypyrrole - Polyvinyl Sulfonate Films. Applied Biochemistry and Biotechnology, 2001, 96, 249-258.	2.9	85
293	Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosensors and Bioelectronics, 2001, 16, 433-437.	10.1	130
294	Continuous-flow fluoro-immunosensor for paclitaxel measurement. Biosensors and Bioelectronics, 2001, 16, 647-652.	10.1	23
295	Cell Surface Display of Organophosphorus Hydrolase Using Ice Nucleation Protein. Biotechnology Progress, 2001, 17, 76-80.	2.6	109
296	Whole-Cell Immobilization Using Cell Surface-Exposed Cellulose-Binding Domain. Biotechnology Progress, 2001, 17, 407-411.	2.6	38
297	Genetic Engineering of Escherichia coli for Enhanced Uptake and Bioaccumulation of Mercury. Applied and Environmental Microbiology, 2001, 67, 5335-5338.	3.1	127
298	<title>Detection of salmonella using a real-time PCR based on molecular beacons</title> ., 2000, 3926, 21.		0
299	Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnology and Bioengineering, 2000, 69, 591-596.	3.3	100
300	Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnology and Bioengineering, 2000, 70, 518-524.	3.3	185
301	Molecular Beacons: A Real-Time Polymerase Chain Reaction Assay for Detecting Salmonella. Analytical Biochemistry, 2000, 280, 166-172.	2.4	146
302	Development of a Fluorescence Immunoassay for Measurement of Paclitaxel in Human Plasma. Analytical Biochemistry, 2000, 283, 33-38.	2.4	21
303	Biodetoxification of coumaphos insecticide using immobilizedEscherichia coli expressing organophosphorus hydrolase enzyme on cell surface. Biotechnology and Bioprocess Engineering, 2000, 5, 436-440.	2.6	20
304	Chemical and Biological Sensors: Meeting the Challenges of Environmental Monitoring. ACS Symposium Series, 2000, , 1-6.	0.5	2
305	Molecular Beacons: A New Approach for Detecting Salmonella Species. ACS Symposium Series, 2000, , 292-298.	0.5	0
306	Field-Deployable Amperometric Enzyme Electrodes for Direct Monitoring of Organophosphate Nerve Agents. NATO Science Series Partnership Sub-series 1, Disarmament Technologies, 2000, , 287-296.	0.1	0

#	Article	IF	Citations
307	Expression, immobilization, and enzymatic characterization of celluloseâ€binding domainâ€organophosphorus hydrolase fusion enzymes. Biotechnology and Bioengineering, 2000, 69, 591-596.	3.3	5
308	Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosensors and Bioelectronics, 1999, 14, 77-85.	10.1	178
309	Engineering of improved microbes and enzymes for bioremediation. Current Opinion in Biotechnology, 1999, 10, 137-141.	6.6	96
310	Fiber-Optic Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Biotechnology Progress, 1999, 15, 130-134.	2.6	109
311	Organophosphorus Hydrolase-Based Assay for Organophosphate Pesticides. Biotechnology Progress, 1999, 15, 517-521.	2.6	70
312	Ferrocene-Conjugatedm-Phenylenediamine Conducting Polymer-Incorporated Peroxidase Biosensors. Analytical Biochemistry, 1999, 267, 141-147.	2.4	46
313	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 1999, 11, 866-869.	2.9	97
314	Detoxification of organophosphate nerve agents by immobilizedEscherichia coli with surface-expressed organophosphorus hydrolase. Biotechnology and Bioengineering, 1999, 63, 216-223.	3.3	84
315	Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase. Analytical Chemistry, 1999, 71, 2246-2249.	6.5	172
316	Encapsulation of enzymes and cells in sol-gel matrices for biosensor applications. , 1999, , .		1
317	<title>Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides</title> ., 1999,,.		1
318	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 1999, 11, 866-869.	2.9	2
319	Factors Influencing Parathion Degradation by Recombinant Escherichia coli with Surface-Expressed Organophosphorus Hydrolase. Biotechnology Progress, 1998, 14, 275-278.	2.6	16
320	The use of live biocatalysts for pesticide detoxification. Trends in Biotechnology, 1998, 16, 71-76.	9.3	83
321	A Potentiometric Microbial Biosensor for Direct Determination of Organophosphate Nerve Agents. Electroanalysis, 1998, 10, 733-737.	2.9	50
322	Enzyme biosensor for determination of organophosphates. Field Analytical Chemistry and Technology, 1998, 2, 363-369.	0.8	26
323	Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 2. Fiber-Optic Microbial Biosensor. Analytical Chemistry, 1998, 70, 5042-5046.	6.5	129
324	Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 1. Potentiometric Microbial Electrode. Analytical Chemistry, 1998, 70, 4140-4145.	6.5	181

#	Article	IF	Citations
325	Principles of Enzyme Biosensors. , 1998, , 3-14.		11
326	A Receptor Protein-Based Bioassay for Quantitative Determination of Paclitaxel. Analytical Chemistry, 1997, 69, 3633-3635.	6.5	7
327	Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nature Biotechnology, 1997, 15, 984-987.	17.5	298
328	Innovative bioreactors. Current Opinion in Biotechnology, 1997, 8, 165-168.	6.6	7
329	Recent Advances in Bioprocess Monitoring and Control. ACS Symposium Series, 1996, , 88-98.	0.5	12
330	Biomolecular Sensing for Bioprocess and Environmental Monitoring Applications. ACS Symposium Series, 1996, , 2-8.	0.5	1
331	Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes. Biosensors and Bioelectronics, 1996, 11, 271-280.	10.1	18
332	Bienzyme sensors based on poly(anilinomethylferrocene)-modified electrodes. Electroanalysis, 1996, 8, 414-419.	2.9	39
333	Chemically Modified Electrode for Hydrogen Peroxide Measurement by Reduction at Low Potential. ACS Symposium Series, 1996, , 61-69.	0.5	4
334	Amperometric Determination of Lipid Hydroperoxides. Analytical Biochemistry, 1995, 225, 277-282.	2.4	13
335	Tetrathiafulvalene-mediated Biosensor for L-lactate in Dairy Products. Journal of Food Science, 1995, 60, 74-78.	3.1	18
336	Principles and Applications of Biosensors for Bioprocess Monitoring and Control. Critical Reviews in Biotechnology, 1995, 15, 105-124.	9.0	67
337	Amperometric Detection of Peroxides with Poly(anilinomethylferrocene)-Modified Enzyme Electrodes. Analytical Chemistry, 1995, 67, 94-100.	6.5	77
338	Ferrocene-Conjugated Polyaniline-Modified Enzyme Electrodes for Determination of Peroxides in Organic Media. Analytical Chemistry, 1995, 67, 1109-1114.	6.5	56
339	Production of acetone-butanol-ethanol by Clostridium acetobutylicum using a spin filter perfusion bioreactor. Journal of Biotechnology, 1994, 34, 51-60.	3.8	26
340	A mediated amperometric enzyme electrode using tetrathiafulvalene and l-glutamate oxidase for the determination of l-glutamic acid. Analytica Chimica Acta, 1993, 282, 353-361.	5.4	39
341	Determination of sulfite in food products by an enzyme electrode. Journal of Biotechnology, 1991, 18, 93-102.	3.8	24
342	Development of a substrate recycle amplification system for l-glutamic acid assay. Enzyme and Microbial Technology, 1991, 13, 116-122.	3.2	8

#	Article	IF	CITATIONS
343	Determination of aspartame in dietary food products by a FIA biosensor. Biosensors and Bioelectronics, 1991, 6, 117-123.	10.1	18
344	A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics, 1991, 6, 125-131.	10.1	38
345	Enzymatic assay technique for the determination of aspartame. Analytica Chimica Acta, 1990, 234, 465-469.	5.4	10
346	Development of a biosensor for assaying postmortem nucleotide degradation in fish tissues. Biotechnology and Bioengineering, 1990, 35, 739-745.	3.3	41
347	Biosynthesis of pullulan using immobilizedAureobasidium pullulans cells. Biotechnology and Bioengineering, 1989, 33, 306-312.	3.3	48
348	Development and application of a biosensor for hypoxanthine in fish extract. Analytica Chimica Acta, 1989, 221, 215-222.	5.4	55
349	Microbial inhibition kinetics revisited. Enzyme and Microbial Technology, 1989, 11, 66-73.	3.2	92
350	The development of an amperometric microbial biosensor using Acetobacter pasteurianus for lactic acid. Journal of Biotechnology, 1989, 10, 241-252.	3.8	15
351	Mathematical modeling of affinity ultrafiltration process. Biotechnology and Bioengineering, 1988, 32, 451-459.	3.3	13
352	Oxygen requirement in pullulan fermentation. Applied Microbiology and Biotechnology, 1988, 28, 361-366.	3.6	67
353	Kinetics of biopolymer synthesis: A revisit. Enzyme and Microbial Technology, 1988, 10, 326-332.	3.2	35
354	Developments and applications of biosensors. Trends in Biotechnology, 1988, 6, 310-316.	9.3	58
355	Batch kinetics of microbial polysaccharide biosynthesis. Biotechnology and Bioengineering, 1988, 32, 639-646.	3.3	60
356	On-line culture fluorescence measurement during the batch cultivation of poly-Î ² -hydroxybutyrate producing Alcaligenes eutrophus. Journal of Biotechnology, 1988, 8, 271-278.	3.8	25
357	Prospective of Conducting Polymer Nanowire for Gas Sensing Application to its Physical Scaling. Advanced Materials Research, 0, 584, 224-228.	0.3	3