Susan G Laurance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3751100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecosystem Decay of Amazonian Forest Fragments: a 22‥ear Investigation. Conservation Biology, 2002, 16, 605-618.	4.7	1,372
2	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	27.8	909
3	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
4	Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution, 2009, 24, 659-669.	8.7	864
5	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
6	Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. , 1998, 282, 439-442.		724
7	The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 2011, 144, 56-67.	4.1	713
8	Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 2004, 10, 545-562.	9.5	633
9	RAIN FOREST FRAGMENTATION AND THE DYNAMICS OF AMAZONIAN TREE COMMUNITIES. Ecology, 1998, 79, 2032-2040.	3.2	609
10	Biomass Collapse in Amazonian Forest Fragments. Science, 1997, 278, 1117-1118.	12.6	580
11	Rainforest fragmentation kills big trees. Nature, 2000, 404, 836-836.	27.8	514
12	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	9.5	497
13	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	12.6	443
14	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	9.5	436
15	Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 353-365.	4.0	405
16	Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19010-19014.	7.1	371
17	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407	4.0	370
18	RAIN FOREST FRAGMENTATION AND THE PROLIFERATION OF SUCCESSIONAL TREES. Ecology, 2006, 87, 469-482.	3.2	359

#	Article	IF	CITATIONS
19	Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 1999, 118, 127-138.	3.2	351
20	Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis. PLoS ONE, 2007, 2, e1017.	2.5	335
21	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
22	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
23	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251
24	Effects of Road Clearings on Movement Patterns of Understory Rainforest Birds in Central Amazonia. Conservation Biology, 2004, 18, 1099-1109.	4.7	246
25	Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature, 2004, 428, 171-175.	27.8	243
26	Effects of Forest Fragmentation on Recruitment Patterns in Amazonian Tree Communities. Conservation Biology, 1998, 12, 460-464.	4.7	226
27	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
28	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
29	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
30	An <scp>A</scp> mazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 2018, 93, 223-247.	10.4	194
31	A review of the use of direct seeding and seedling plantings in restoration: what do we know and where should we go?. Applied Vegetation Science, 2015, 18, 561-568.	1.9	152
32	CHANGES IN GROWTH OF TROPICAL FORESTS: EVALUATING POTENTIAL BIASES. , 2002, 12, 576-587.		148
33	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
34	Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecology and Management, 2004, 190, 131-143.	3.2	142
35	Where and How Are Roads Endangering Mammals in Southeast Asia's Forests?. PLoS ONE, 2014, 9, e115376.	2.5	129
36	Tropical forest fragmentation and greenhouse gas emissions. Forest Ecology and Management, 1998, 110, 173-180.	3.2	124

#	Article	IF	CITATIONS
37	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
38	Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia, 2004, 141, 596-611.	2.0	121
39	Tropical wildlife corridors: use of linear rainforest remnants by arboreal mammals. Biological Conservation, 1999, 91, 231-239.	4.1	118
40	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
41	How do herbivorous insects respond to drought stress in trees?. Biological Reviews, 2020, 95, 434-448.	10.4	114
42	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
43	RESPONSES OF UNDERSTORY RAIN FOREST BIRDS TO ROAD EDGES IN CENTRAL AMAZONIA. , 2004, 14, 1344-1357.		104
44	Habitat fragmentation and the desiccation of forest canopies: A case study from eastern Amazonia. Biological Conservation, 2010, 143, 2763-2769.	4.1	104
45	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	3.2	98
46	Longâ€ŧerm variation in Amazon forest dynamics. Journal of Vegetation Science, 2009, 20, 323-333.	2.2	96
47	Longâ€ŧerm changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology, 2014, 95, 1604-1611.	3.2	96
48	Inferred causes of tree mortality in fragmented and intact Amazonian forests. Journal of Tropical Ecology, 2004, 20, 243-246.	1.1	92
49	Possible Indirect Effects of Mammal Hunting on Dung Beetle Assemblages in Panama. Biotropica, 2007, 39, 141-146.	1.6	89
50	Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 79-87.	2.7	89
51	Ecological restoration in Brazilian biomes: Identifying advances and gaps. Forest Ecology and Management, 2020, 458, 117802.	3.2	87
52	Predicting Publication Success for Biologists. BioScience, 2013, 63, 817-823.	4.9	82
53	Do species traits determine patterns of wood production in Amazonian forests?. Biogeosciences, 2009, 6, 297-307.	3.3	81
54	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78

#	Article	IF	CITATIONS
55	Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. Journal of Vegetation Science, 2008, 19, 863-874.	2.2	76
56	Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science, 2010, 21, 96-106.	2.2	76
57	Tropical tree mortality has increased with rising atmospheric water stress. Nature, 2022, 608, 528-533.	27.8	74
58	Effects of the Surrounding Matrix on Tree Recruitment in Amazonian Forest Fragments. Conservation Biology, 2006, 20, 853-860.	4.7	73
59	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
60	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
61	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
62	Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasites and Vectors, 2016, 9, 387.	2.5	70
63	Clearing Width and Movements of Understory Rainforest Birds ¹ . Biotropica, 2005, 37, 149-152.	1.6	63
64	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
65	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
66	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
67	Demographic and lifeâ€history correlates for Amazonian trees. Journal of Vegetation Science, 2005, 16, 625-634.	2.2	61
68	Effects of Forest Fragmentation on Recruitment Patterns in Amazonian Tree Communities. Conservation Biology, 1998, 12, 460-464.	4.7	61
69	Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landscape Ecology, 2016, 31, 601-618.	4.2	59
70	Responses of Five Arboreal Marsupials to Recent Selective Logging in Tropical Australia. Biotropica, 1996, 28, 310.	1.6	57
71	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
72	Green labelling, sustainability and the expansion of tropical agriculture: Critical issues for certification schemes. Biological Conservation, 2012, 151, 60-64.	4.1	54

#	Article	IF	CITATIONS
73	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
74	Forest age and isolation affect the rate of recovery of plant species diversity and community composition in secondary rain forests in tropical Australia. Journal of Vegetation Science, 2016, 27, 504-514.	2.2	51
75	Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 2015, 103, 1276-1290.	4.0	50
76	Effects of landscape disturbance on mosquito community composition in tropical Australia. Journal of Vector Ecology, 2012, 37, 69-76.	1.0	45
77	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	3.8	45
78	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
79	Habitat Fragmentation and Ecological Traits Influence the Prevalence of Avian Blood Parasites in a Tropical Rainforest Landscape. PLoS ONE, 2013, 8, e76227.	2.5	41
80	Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology, 2014, 95, 3018-3026.	3.2	41
81	Threats to environmentally sensitive areas from peri-urban expansion in Mauritius. Environmental Conservation, 2015, 42, 256-267.	1.3	39
82	Soil types influence predictions of soil carbon stock recovery in tropical secondary forests. Forest Ecology and Management, 2016, 376, 74-83.	3.2	39
83	Rain Forest Fragmentation and the Dynamics of Amazonian Tree Communities. Ecology, 1998, 79, 2032.	3.2	38
84	Rain-forest fragmentation and the phenology of Amazonian tree communities. Journal of Tropical Ecology, 2003, 19, 343-347.	1.1	37
85	Longâ€Term Dynamics of a Fragmented Rainforest Mammal Assemblage. Conservation Biology, 2008, 22, 1154-1164.	4.7	35
86	Phylogenetic Impoverishment of Amazonian Tree Communities in an Experimentally Fragmented Forest Landscape. PLoS ONE, 2014, 9, e113109.	2.5	34
87	Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution, 2018, 8, 12479-12491.	1.9	34
88	Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees. PLoS ONE, 2015, 10, e0130799.	2.5	34
89	Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea. Clobal Change Biology, 2017, 23, 4873-4883.	9.5	33
90	A guide for ecologists: Detecting the role of disease in faunal declines and managing population recovery. Biological Conservation, 2017, 214, 136-146.	4.1	33

#	Article	IF	CITATIONS
91	Predicted trajectories of tree community change in Amazonian rainforest fragments. Ecography, 2017, 40, 26-35.	4.5	33
92	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
93	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
94	A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia. Environmental Research Letters, 2016, 11, 114022.	5.2	27
95	Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology, 2017, 31, 582-591.	3.6	27
96	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
97	Altered Tree Communities in Undisturbed Amazonian Forests: A Consequence of Global Change?1. Biotropica, 2005, 37, 160-162.	1.6	25
98	Defeating the â€ [~] resource curse': Key priorities for conserving Papua New Guinea's native forests. Biological Conservation, 2012, 151, 35-40.	4.1	22
99	Land Use Influences Mosquito Communities and Disease Risk on Remote Tropical Islands: A Case Study Using a Novel Sampling Technique. American Journal of Tropical Medicine and Hygiene, 2016, 94, 314-321.	1.4	21
100	Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecology and Diversity, 2015, 8, 229-241.	2.4	20
101	Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic island. Biological Conservation, 2012, 149, 136-142.	4.1	19
102	Shifting dynamics of climate-functional groups in old-growth Amazonian forests. Plant Ecology and Diversity, 2014, 7, 267-279.	2.4	18
103	Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environmental Research Letters, 2017, 12, 044017.	5.2	18
104	Native turncoats and indirect facilitation of species invasions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20171936.	2.6	18
105	Dispersal and recruitment limitations in secondary forests. Journal of Vegetation Science, 2021, 32, .	2.2	18
106	Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiology, 2019, 39, 1806-1820.	3.1	17
107	Stability of tropical forest tree carbonâ€water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 2021, 27, 6454-6466.	9.5	17
108	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17

#	Article	IF	CITATIONS
109	Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Global Change Biology, 2022, 28, 1414-1432.	9.5	16
110	Functional trait representation differs between restoration plantings and mature tropical rainforest. Forest Ecology and Management, 2020, 473, 118304.	3.2	14
111	Characteristics of the <scp><i>P</i></scp> <i>sidium cattleianum</i> invasion of secondary rainforests. Austral Ecology, 2016, 41, 344-354.	1.5	13
112	Forest edge disturbance increases rattan abundance in tropical rain forest fragments. Scientific Reports, 2017, 7, 6071.	3.3	13
113	Incorporating resilience and cost in ecological restoration strategies at landscape scale. Ecology and Society, 2016, 21, .	2.3	12
114	An Amazonian Forest and Its Fragments as a Laboratory of Global Change. Ecological Studies, 2016, , 407-440.	1.2	12
115	When rare species are not important: linking plot-based vegetation classifications and landscape-scale mapping in Australian savanna vegetation. Community Ecology, 2018, 19, 67-76.	0.9	12
116	Liana cover in the canopies of rainforest trees is not predicted by local groundâ€based measures. Austral Ecology, 2019, 44, 759-767.	1.5	12
117	Rainforest fragmentation and the demography of the economically important palm Oenocarpus bacaba in central Amazonia. Plant Ecology, 2008, 199, 209-215.	1.6	11
118	Overcoming the Challenges of Mosquito (Diptera: Culicidae) Sampling in Remote Localities: A Comparison of CO ₂ Attractants on Mosquito Communities in Three Tropical Forest Habitats. Journal of Medical Entomology, 2014, 51, 39-45.	1.8	10
119	Vegetation and floristics of a lowland tropical rainforest in northeast Australia. Biodiversity Data Journal, 2016, 4, e7599.	0.8	10
120	Unanticipated Effects of Stand Dynamism on Amazonian Tree Diversity. Biotropica, 2010, 42, 429-434.	1.6	9
121	Not Everyone Wants Roads: Assessing Indigenous People's Support for Roads in a Globally Important Tiger Conservation Landscape. Human Ecology, 2018, 46, 909-915.	1.4	9
122	Demographic and life-history correlates for Amazonian trees. Journal of Vegetation Science, 2005, 16, 625.	2.2	9
123	Gender differences in science: no support for the â€~Homer Simpson Effect' among tropical researchers. Trends in Ecology and Evolution, 2011, 26, 262-263.	8.7	8
124	Enhancing Plant Diversity in Secondary Forests. Frontiers in Forests and Global Change, 2020, 3, .	2.3	8
125	Seasonal patterns in rainforest litterfall: Detecting endogenous and environmental influences from longâ€ŧerm sampling. Austral Ecology, 2018, 43, 225-235.	1.5	7
126	The effects of an experimental drought on the ecophysiology and fruiting phenology of a tropical rainforest palm. Journal of Plant Ecology, 2020, 13, 744-753.	2.3	7

#	Article	IF	CITATIONS
127	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	1.6	5
128	Drought reduces the growth and health of tropical rainforest understory plants. Forest Ecology and Management, 2022, 511, 120128.	3.2	5
129	Peat fires: emissions likely to worsen. Nature, 2015, 527, 305-305.	27.8	4
130	Supervised versus unâ€supervised classification: A quantitative comparison of plant communities in savanna vegetation. Applied Vegetation Science, 2019, 22, 373.	1.9	4
131	Identifying Rising Stars in Biology: A Response to Bruna. BioScience, 2014, 64, 169-170.	4.9	3
132	Late twentieth-century patterns and trends in Amazon tree turnover. , 2005, , 107-128.		3
133	Tropical wet and dry forest tree species exhibit contrasting hydraulic architecture. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 291, 152072.	1.2	3
134	Recarbonization of the Humid Tropics. , 2012, , 229-252.		2
135	The effect of drought on wood-boring in trees and saplings in tropical rainforests. Forest Ecology and Management, 2021, 489, 119078.	3.2	2
136	Bandages for Wounded Landscapes: Faunal Corridors and Their Role in Wildlife Conservation in the Americas. Ecological Studies, 2003, , 313-325.	1.2	2
137	Late twentieth-century trends in the biomass of Amazonian forest plots. , 2005, , 129-142.		2
138	2009 ALWYN GENTRY AWARDS. Biotropica, 2009, 41, 774-775.	1.6	1
139	White possums must stay cool to survive. Nature, 2014, 512, 136-136.	27.8	1
140	Threats to Environmentally Sensitive Areas from Peri-Urban Expansion in Mauritius. , 2019, , 213-237.		1
141	The intertidal plant communities in northâ€eastern Australia, their carbon stores and vulnerability to extreme climate events. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 2298-2312.	2.0	1
142	Late twentieth-century trends in tree-community composition in an Amazonian forest. , 2005, , 97-106.		1
143	Homing in on the â€~Homer Simpson Effect': reply to Dugdale et al. Trends in Ecology and Evolution, 2011, 26, 623.	8.7	0