
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3750104/publications.pdf Version: 2024-02-01

DONG WANG

#	Article	IF	CITATIONS
1	Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery, 2005, 4, 307-320.	46.4	3,194
2	Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis. Cell, 2006, 127, 941-954.	28.9	421
3	Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Angstrom Resolution. Science, 2009, 324, 1203-1206.	12.6	225
4	5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nature Structural and Molecular Biology, 2012, 19, 831-833.	8.2	204
5	Identification of H3K4me1-associated proteins at mammalian enhancers. Nature Genetics, 2018, 50, 73-82.	21.4	177
6	Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4239-4244.	7.1	162
7	Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature, 2017, 551, 653-657.	27.8	151
8	Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 2021, 593, 418-423.	27.8	151
9	Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature, 2015, 523, 621-625.	27.8	141
10	Millisecond dynamics of RNA polymerase II translocation at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7665-7670.	7.1	127
11	Dynamics of Pyrophosphate Ion Release and Its Coupled Trigger Loop Motion from Closed to Open State in RNA Polymerase II. Journal of the American Chemical Society, 2012, 134, 2399-2406.	13.7	118
12	X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9584-9589.	7.1	116
13	RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2886-2893.	7.1	86
14	Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue. Nature Communications, 2016, 7, 11244.	12.8	77
15	RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15745-15750.	7.1	70
16	Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis. Journal of the American Chemical Society, 2013, 135, 13054-13061.	13.7	67
17	Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models. Accounts of Chemical Research, 2016, 49, 687-694.	15.6	49
18	Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair, 2018, 71, 43-55.	2.8	41

#	Article	IF	CITATIONS
19	Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E410-9.	7.1	38
20	Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. ELife, 2016, 5, .	6.0	38
21	Pyreneâ€Based Quantitative Detection of the 5â€Formylcytosine Loci Symmetry in the CpG Duplex Content during TETâ€Dependent Demethylation. Angewandte Chemie - International Edition, 2014, 53, 11223-11227.	13.8	35
22	Epigenetic DNA Modification <i>N</i> ⁶ -Methyladenine Causes Site-Specific RNA Polymerase II Transcriptional Pausing. Journal of the American Chemical Society, 2017, 139, 14436-14442.	13.7	35
23	Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity. Journal of the American Chemical Society, 2012, 134, 8231-8240.	13.7	34
24	Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7082-E7091.	7.1	31
25	Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2538-E2545.	7.1	31
26	A chemical probe targets DNA 5-formylcytosine sites and inhibits TDG excision, polymerases bypass, and gene expression. Chemical Science, 2014, 5, 567-574.	7.4	29
27	Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nature Cell Biology, 2022, 24, 793-804.	10.3	29
28	Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair, 2014, 19, 71-83.	2.8	28
29	Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8972-8977.	7.1	27
30	3.1â€ [−] à structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. Journal of Structural Biology, 2019, 207, 270-278.	2.8	27
31	Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25486-25493.	7.1	26
32	RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair–π and CH–π interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9338-9348.	7.1	26
33	RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 503-519.	5.2	25
34	RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12426-12431.	7.1	25
35	Regulation of the Rhp26 ^{ERCC6/CSB} chromatin remodeler by a novel conserved leucine latch motif. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18566-18571.	7.1	22
36	Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues. Nucleic Acids Research, 2014, 42, 5863-5870.	14.5	17

#	Article	IF	CITATIONS
37	Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nature Chemical Biology, 2021, 17, 906-914.	8.0	16
38	Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes. PLoS Computational Biology, 2015, 11, e1004354.	3.2	15
39	Impact of template backbone heterogeneity on RNA polymerase II transcription. Nucleic Acids Research, 2015, 43, 2232-2241.	14.5	15
40	Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194659.	1.9	15
41	A Chemical Perspective on Transcriptional Fidelity: Dominant Contributions of Sugar Integrity Revealed by Unlocked Nucleic Acids. Angewandte Chemie - International Edition, 2013, 52, 12341-12345.	13.8	14
42	Intrinsic cleavage of RNA polymerase II adopts a nucleobase-independent mechanism assisted by transcript phosphate. Nature Catalysis, 2019, 2, 228-235.	34.4	13
43	Mechanism of transcription-coupled DNA modification recognition. Cell and Bioscience, 2017, 7, 9.	4.8	12
44	Understanding the Molecular Basis of RNA Polymerase II Transcription. Israel Journal of Chemistry, 2013, 53, 442-449.	2.3	11
45	Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nature Communications, 2021, 12, 7001.	12.8	11
46	RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications. Transcription, 2016, 7, 57-62.	3.1	10
47	Molecular basis of chromatin remodeling by Rhp26, a yeast CSB ortholog. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6120-6129.	7.1	10
48	Molecular Dynamics Simulation Study of Conformational Changes of Transcription Factor TFIIS during RNA Polymerase II Transcriptional Arrest and Reactivation. PLoS ONE, 2014, 9, e97975.	2.5	10
49	8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. Journal of Biological Chemistry, 2019, 294, 4924-4933.	3.4	9
50	Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3269-76.	7.1	8
51	Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures. Nucleic Acids Research, 2021, 49, 4944-4953.	14.5	8
52	The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Research, 2021, 81, 426-437.	0.9	7
53	Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Methods, 2019, 159-160, 29-34.	3.8	6
54	Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution. Nucleic Acids Research, 2016, 44, 3820-3828.	14.5	4

#	Article	IF	CITATIONS
55	A panorama of transcription-coupled repair in yeast chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20991-20993.	7.1	3
56	FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. Journal of Immunology, 2021, 206, 1228-1239.	0.8	3
57	Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs. Nucleic Acids Research, 2021, 49, 7618-7627.	14.5	3
58	RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114065119.	7.1	3
59	A comprehensive mechanism for 5-carboxylcytosine-induced transcriptional pausing revealed by Markov state models. Journal of Biological Chemistry, 2021, 296, 100735.	3.4	2
60	Using genetics to reveal protein structure. Science, 2020, 370, 1269-1270.	12.6	1
61	Innentitelbild: A Chemical Perspective on Transcriptional Fidelity: Dominant Contributions of Sugar Integrity Revealed by Unlocked Nucleic Acids (Angew. Chem. 47/2013). Angewandte Chemie, 2013, 125, 12418-12418.	2.0	0
62	Mechanisms of RNA polymerase II processing of DNA lesions formed by novel monofunctional platinum anticancer drugs (560.11). FASEB Journal, 2014, 28, .	0.5	0
63	Structural and chemical perspectives of RNA polymerase II transcriptional fidelity (939.5). FASEB Journal, 2014, 28, .	0.5	0