
Jan Philipp Junker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3749017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nature Biotechnology, 2018, 36, 469-473.	17.5	396
2	Genome-wide RNA Tomography in the Zebrafish Embryo. Cell, 2014, 159, 662-675.	28.9	248
3	Ascl2 Acts as an R-spondin/Wnt-Responsive Switch to Control Stemness in Intestinal Crypts. Cell Stem Cell, 2015, 16, 158-170.	11.1	217
4	Ligand-Dependent Equilibrium Fluctuations of Single Calmodulin Molecules. Science, 2009, 323, 633-637.	12.6	203
5	Single-molecule mRNA detection and counting in mammalian tissue. Nature Protocols, 2013, 8, 1743-1758.	12.0	187
6	Every Cell Is Special: Genome-wide Studies Add a New Dimension to Single-Cell Biology. Cell, 2014, 157, 8-11.	28.9	177
7	Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Developmental Cell, 2016, 36, 36-49.	7.0	176
8	Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes and Development, 2012, 26, 2802-2816.	5.9	158
9	A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary. PLoS Genetics, 2015, 11, e1005531.	3.5	93
10	Tomo-Seq Identifies SOX9 as a Key Regulator of Cardiac Fibrosis During Ischemic Injury. Circulation, 2017, 136, 1396-1409.	1.6	81
11	Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nature Protocols, 2006, 1, 80-84.	12.0	71
12	Influence of Substrate Binding on the Mechanical Stability of Mouse Dihydrofolate Reductase. Biophysical Journal, 2005, 89, L46-L48.	0.5	59
13	Spatial Transcriptomics of C.Âelegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Developmental Cell, 2018, 47, 801-813.e6.	7.0	55
14	Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development (Cambridge), 2012, 139, 1863-1873.	2.5	51
15	Single-molecule force spectroscopy distinguishes target binding modes of calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14361-14366.	7.1	49
16	Licensing of Primordial Germ Cells for Gametogenesis Depends on Genital Ridge Signaling. PLoS Genetics, 2015, 11, e1005019.	3.5	48
17	Tomo-seq. Methods in Cell Biology, 2016, 135, 299-307.	1.1	46
18	The transcriptome dynamics of single cells during the cell cycle. Molecular Systems Biology, 2020, 16, e9946.	7.2	35

JAN PHILIPP JUNKER

#	Article	IF	CITATIONS
19	A Predictive Model of Bifunctional Transcription Factor Signaling during Embryonic Tissue Patterning. Developmental Cell, 2014, 31, 448-460.	7.0	31
20	Methods for lineage tracing on the organism-wide level. Current Opinion in Cell Biology, 2017, 49, 16-21.	5.4	31
21	Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta. Blood, 2020, 136, 831-844.	1.4	28
22	Spatio-temporal mRNA tracking in the early zebrafish embryo. Nature Communications, 2021, 12, 3358.	12.8	25
23	DAZL regulates Tet1 translation in murine embryonic stem cells. EMBO Reports, 2015, 16, 791-802.	4.5	24
24	Evidence for a Broad Transition‣tate Ensemble in Calmodulin Folding from Singleâ€Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 3306-3309.	13.8	23
25	Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Research, 2021, 49, 4325-4337.	14.5	21
26	Single-Cell Transcriptomics Enters the Age of Mass Production. Molecular Cell, 2015, 58, 563-564.	9.7	17
27	Spatial transcriptomics unveils ZBTB11 as a regulator of cardiomyocyte degeneration in arrhythmogenic cardiomyopathy. Cardiovascular Research, 2023, 119, 477-491.	3.8	17
28	RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq). Methods in Molecular Biology, 2019, 1920, 129-141.	0.9	13
29	Variability of an Early Developmental Cell Population Underlies Stochastic Laterality Defects. Cell Reports, 2021, 34, 108606.	6.4	12
30	A single-cell atlas of <i>de novo</i> β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development (Cambridge), 2022, 149, .	2.5	12
31	Patched Receptors Sense, Interpret, and Establish an Epidermal Hedgehog SignalingÂGradient. Journal of Investigative Dermatology, 2017, 137, 179-186.	0.7	11
32	Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. Cell Genomics, 2022, 2, 100083.	6.5	8
33	Response to the Comment by Ainavarapu et al Biophysical Journal, 2006, 91, 2011-2012.	0.5	7
34	Transcription Factor Induction of Ectopic Vascular Blood Stem Cell Niches In Vivo. Blood, 2019, 134, 525-525.	1.4	5
35	When Noisy Neighbors Are a Blessing: Analysis of Gene Expression Noise Identifies Coregulated Genes. Molecular Cell, 2012, 45, 437-438.	9.7	4
36	Inclusion of temporal information in single cell transcriptomics. International Journal of Biochemistry and Cell Biology, 2020, 122, 105745.	2.8	4

#	Article	IF	CITATIONS
37	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	3.8	3
38	Detouring the roadblocks in gene expression. Nature Reviews Molecular Cell Biology, 2019, 20, 197-197.	37.0	2
39	Single-cell genomics to study developmental cell fate decisions in zebrafish. Briefings in Functional Genomics, 2021, , .	2.7	1
40	Genome-wide RNA tomography analysis of the microenvironment promoting hematopoietic stem cell emergence in the embryo aorta. Experimental Hematology, 2015, 43, S104.	0.4	0
41	Genome-Wide RNA Tomography of the Hematopoietic Stem Cell Niche in Zebrafish Reveals Unexpected Functional Macrophage-Stem Cell Interactions. Blood, 2016, 128, 3882-3882.	1.4	0