Yoshinori Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748810/publications.pdf

Version: 2024-02-01

129 papers 8,676 citations

49 h-index

41344

81 g-index

141 all docs

141 docs citations

times ranked

141

10581 citing authors

#	Article	IF	CITATIONS
1	Population-based Screening for Hereditary Colorectal Cancer Variants in Japan. Clinical Gastroenterology and Hepatology, 2022, 20, 2132-2141.e9.	4.4	20
2	Genome-wide association study of colorectal polyps identified highly overlapping polygenic architecture with colorectal cancer. Journal of Human Genetics, 2022, 67, 149-156.	2.3	5
3	Usefulness of circulating tumor DNA by targeting human papilloma virus-derived sequences as a biomarker in p16-positive oropharyngeal cancer. Scientific Reports, 2022, 12, 572.	3.3	13
4	<i>Trans</i> â€homophilic interaction of CADM1 promotes organ infiltration of Tâ€cell lymphoma by adhesion to vascular endothelium. Cancer Science, 2022, , .	3.9	4
5	Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nature Genetics, 2022, 54, 450-458.	21.4	109
6	Expansion of Cancer Risk Profile for <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2022, 8, 871.	7.1	70
7	Genetic analysis of right heart structure and function in 40,000 people. Nature Genetics, 2022, 54, 792-803.	21.4	34
8	CADM1 promotes malignant features of small-cell lung cancer by recruiting 4.1R to the plasma membrane. Biochemical and Biophysical Research Communications, 2021, 534, 172-178.	2.1	6
9	Short somatic alterations at the site of copy number variation in breast cancer. Cancer Science, 2021, 112, 444-453.	3.9	6
10	Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nature Medicine, 2021, 27, 1012-1024.	30.7	109
11	Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nature Medicine, 2021, 27, 1239-1249.	30.7	78
12	Susceptibility loci and polygenic architecture highlight population specific and common genetic features in inguinal hernias. EBioMedicine, 2021, 70, 103532.	6.1	8
13	A cross-population atlas of genetic associations for 220 human phenotypes. Nature Genetics, 2021, 53, 1415-1424.	21.4	560
14	Circulating Tumor DNA Harboring the <i>BRAF^{V600E}</i> Outcomes of Primary Papillary Thyroid Cancer Patients. Thyroid, 2021, 31, 1822-1828.	4.5	6
15	Mathematical Modeling of the Dimerization of EGFR and ErbB3 inÂLung Adenocarcinoma. Springer Proceedings in Mathematics and Statistics, 2021, , 195-202.	0.2	O
16	Pharmacological inhibition of Mint3 attenuates tumour growth, metastasis, and endotoxic shock. Communications Biology, 2021, 4, 1165.	4.4	4
17	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
18	Functional variants in ADH1B and ALDH2 are non-additively associated with all-cause mortality in Japanese population. European Journal of Human Genetics, 2020, 28, 378-382.	2.8	14

#	Article	IF	CITATIONS
19	GWAS of five gynecologic diseases and cross-trait analysis in Japanese. European Journal of Human Genetics, 2020, 28, 95-107.	2.8	32
20	<i>HLAâ€B*51:01</i> and <i>CYP2C9*3</i> Are Risk Factors for Phenytoinâ€Induced Eruption in the Japanese Population: Analysis of Data From the Biobank Japan Project. Clinical Pharmacology and Therapeutics, 2020, 107, 1170-1178.	4.7	13
21	Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine, 2020, 60, 103033.	6.1	39
22	The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell, 2020, 182, 1214-1231.e11.	28.9	388
23	Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics, 2020, 52, 1169-1177.	21.4	206
24	Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nature Genetics, 2020, 52, 1346-1354.	21.4	126
25	Endogenization and excision of human herpesvirus 6 in human genomes. PLoS Genetics, 2020, 16, e1008915.	3.5	22
26	A Mendelian randomization study identified obesity as a causal risk factor of uterine endometrial cancer in Japanese. Cancer Science, 2020, 111, 4646-4651.	3.9	22
27	Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell, 2020, 182, 1198-1213.e14.	28.9	353
28	Mint3 depletion restricts tumor malignancy of pancreatic cancer cells by decreasing SKP2 expression via HIF-1. Oncogene, 2020, 39, 6218-6230.	5.9	16
29	Fine Mapping of the Major Histocompatibility Complex Region and Association of the HLA-B*52:01 Allele With Cervical Cancer in Japanese Women. JAMA Network Open, 2020, 3, e2023248.	5.9	7
30	Reciprocal expression of trefoil factorâ€1 and thyroid transcription factorâ€1 in lung adenocarcinomas. Cancer Science, 2020, 111, 2183-2195.	3.9	10
31	Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002670.	3.6	44
32	Chromosomal alterations among age-related haematopoietic clones in Japan. Nature, 2020, 584, 130-135.	27.8	102
33	Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nature Genetics, 2020, 52, 669-679.	21.4	304
34	EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Scientific Reports, 2020, 10, 9275.	3.3	18
35	Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan. Nature Medicine, 2020, 26, 542-548.	30.7	74
36	Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Communications Biology, 2020, 3, 104.	4.4	32

3

#	Article	IF	CITATIONS
37	CADM1 suppresses c-Src activation by binding with Cbp on membrane lipid rafts and intervenes colon carcinogenesis. Biochemical and Biophysical Research Communications, 2020, 529, 854-860.	2.1	5
38	Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nature Communications, 2020, 11, 3175.	12.8	34
39	GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nature Human Behaviour, 2020, 4, 308-316.	12.0	80
40	Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction. Nature Communications, 2020, 11, 1569.	12.8	58
41	Genome-Wide Natural Selection Signatures Are Linked to Genetic Risk of Modern Phenotypes in the Japanese Population. Molecular Biology and Evolution, 2020, 37, 1306-1316.	8.9	22
42	Mint3 is dispensable for pancreatic and kidney functions in mice. Biochemistry and Biophysics Reports, 2020, 24, 100872.	1.3	2
43	GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nature Communications, 2019, 10, 4719.	12.8	50
44	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
45	Characterizing rare and low-frequency height-associated variants in the Japanese population. Nature Communications, 2019, 10, 4393.	12.8	123
46	Comparison of effects of UGT1A1*6 and UGT1A1*28 on irinotecan-induced adverse reactions in the Japanese population: analysis of the Biobank Japan Project. Journal of Human Genetics, 2019, 64, 1195-1202.	2.3	19
47	CADM 1 associates with Hippo pathway core kinases; membranous co–expression of CADM 1 and LATS 2 in lung tumors predicts good prognosis. Cancer Science, 2019, 110, 2284-2295.	3.9	14
48	A case of an elderly patient with high-grade colorectal cancer in poor general condition who showed near complete response to chemotherapy and achieved long-term survival. International Journal of Surgery Case Reports, 2019, 58, 186-189.	0.6	1
49	Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Communications Biology, 2019, 2, 115.	4.4	66
50	Mathematical analysis of gefitinib resistance of lung adenocarcinoma caused by MET amplification. Biochemical and Biophysical Research Communications, 2019, 511, 544-550.	2.1	11
51	Genetic predisposition to mosaic Y chromosome loss in blood. Nature, 2019, 575, 652-657.	27.8	198
52	Identification of two novel breast cancer loci through large-scale genome-wide association study in the Japanese population. Scientific Reports, 2019, 9, 17332.	3.3	9
53	Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nature Genetics, 2019, 51, 379-386.	21.4	164
54	Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. International Journal of Oncology, 2018, 52, 155-165.	3.3	39

#	Article	IF	CITATIONS
55	GWAS identifies two novel colorectal cancer loci at 16q24.1 and 20q13.12. Carcinogenesis, 2018, 39, 652-660.	2.8	52
56	Expression profile of CADM1 and CADM4 in triple negative breast cancer with primary systemic therapy. Oncology Letters, 2018, 17, 921-926.	1.8	4
57	Genome-wide association study (GWAS) of ovarian cancer in Japanese predicted regulatory variants in 22q13.1. PLoS ONE, 2018, 13, e0209096.	2.5	8
58	Genomeâ€wide association study identifies gastric cancer susceptibility loci at 12q24.11â€12 and 20q11.21. Cancer Science, 2018, 109, 4015-4024.	3.9	39
59	Mathematical modeling and analysis of ErbB3 and EGFR dimerization process for the gefitinib resistance. JSIAM Letters, 2018, 10, 33-36.	0.5	3
60	Development of a Highly Sensitive Device for Counting the Number of Disease-Specific Exosomes in Human Sera. Clinical Chemistry, 2018, 64, 1463-1473.	3.2	53
61	Progression of Pulmonary Emphysema and Continued Increase in Ectodomain Shedding of Cell Adhesion Molecule 1 After Cessation of Cigarette Smoke Exposure in Mice. Frontiers in Cell and Developmental Biology, 2018, 6, 52.	3.7	7
62	Quantitative Analysis of Interaction Between CADM1 and Its Binding Cell-Surface Proteins Using Surface Plasmon Resonance Imaging. Frontiers in Cell and Developmental Biology, 2018, 6, 86.	3.7	8
63	Cross-sectional analysis of BioBank Japan clinical data: A large cohort of 200,000 patients with 47 common diseases. Journal of Epidemiology, 2017, 27, S9-S21.	2.4	133
64	Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation. Scientific Reports, 2017, 7, 46174.	3.3	19
65	Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4416-E4424.	7.1	24
66	Overview of the BioBank Japan Project: Study design and profile. Journal of Epidemiology, 2017, 27, S2-S8.	2.4	451
67	Overview of BioBank Japan follow-up data in 32 diseases. Journal of Epidemiology, 2017, 27, S22-S28.	2.4	47
68	Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice. Biochemical and Biophysical Research Communications, 2017, 490, 688-692.	2.1	10
69	A One-Pot Three-Component Double-Click Method for Synthesis of [67Cu]-Labeled Biomolecular Radiotherapeutics. Scientific Reports, 2017, 7, 1912.	3.3	25
70	Establishment of highly metastatic KRAS mutant lung cancer cell sublines in long-term three-dimensional low attachment cultures. PLoS ONE, 2017, 12, e0181342.	2.5	17
71	Decreased expression of CADM1 and CADM4 are associated with advanced stage breast cancer. Oncology Letters, 2017, 15, 2401-2406.	1.8	19
72	Measles virus selectively blind to signaling lymphocyte activity molecule has oncolytic efficacy against nectinâ€4â€expressing pancreatic cancer cells. Cancer Science, 2016, 107, 1647-1652.	3.9	32

#	Article	IF	Citations
73	The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discovery, 2016, 2, 16019.	6.7	40
74	Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncology Reports, 2016, 35, 2065-2072.	2.6	32
75	Mint3/Apba3 depletion ameliorates severe murine influenza pneumonia and macrophage cytokine production in response to the influenza virus. Scientific Reports, 2016, 6, 37815.	3.3	15
76	Loss of <i><scp>YAP</scp>1</i> defines neuroendocrine differentiation of lung tumors. Cancer Science, 2016, 107, 1527-1538.	3.9	82
77	Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer. International Journal of Oncology, 2016, 49, 1385-1393.	3.3	20
78	NECAB3 Promotes Activation of Hypoxia-inducible factor-1 during Normoxia and Enhances Tumourigenicity of Cancer Cells. Scientific Reports, 2016, 6, 22784.	3.3	30
79	CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. Journal of Experimental Medicine, 2016, 213, 123-138.	8.5	155
80	Dynamic Regulation of a Cell Adhesion Protein Complex Including CADM1 by Combinatorial Analysis of FRAP with Exponential Curve-Fitting. PLoS ONE, 2015, 10, e0116637.	2.5	20
81	A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells. Oncotarget, 2015, 6, 24895-24903.	1.8	25
82	Increased ectodomain shedding of lung epithelial cell adhesion molecule 1 as a cause of increased alveolar cell apoptosis in emphysema. Thorax, 2014, 69, 223-231.	5.6	37
83	Preface to topic "International collaboration to control cholangiocarcinoma― Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 297-298.	2.6	0
84	Highlights of topic "Etiology and epidemiology of cholangiocarcinoma― Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 299-300.	2.6	2
85	Highlights of topic "Biochemical and molecular pathological aspects of cholangiocarcinoma― Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 359-361.	2.6	0
86	Genomic and transcriptional alterations of cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2014, 21, 380-387.	2.6	23
87	Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Human Pathology, 2014, 45, 1397-1405.	2.0	66
88	Trans-Homophilic Interaction of CADM1 Activates PI3K by Forming a Complex with MAGuK-Family Proteins MPP3 and Dlg. PLoS ONE, 2014, 9, e82894.	2.5	34
89	Detection of Lung Tumors in Mice Using a 1-Tesla Compact Magnetic Resonance Imaging System. PLoS ONE, 2014, 9, e94945.	2.5	7
90	Lung cancer with loss of <scp>BRG</scp> 1/ <scp>BRM</scp> , shows epithelial mesenchymal transition phenotype and distinct histologic and genetic features. Cancer Science, 2013, 104, 266-273.	3.9	103

#	Article	lF	Citations
91	Cell adhesion molecule 1 is a new osteoblastic cell adhesion molecule and a diagnostic marker for osteosarcoma. Life Sciences, 2013, 92, 91-99.	4.3	29
92	Adhesion molecule CADM1 contributes to gap junctional communication among pancreatic islet \hat{l}_{\pm} -cells and prevents their excessive secretion of glucagon. Islets, 2012, 4, 49-55.	1.8	24
93	Identification of CCDC6-RET Fusion in the Human Lung Adenocarcinoma Cell Line, LC-2/ad. Journal of Thoracic Oncology, 2012, 7, 1872-1876.	1.1	90
94	Tumor suppressor cell adhesion molecule 1 (CADM1) is cleaved by a disintegrin and metalloprotease 10 (ADAM10) and subsequently cleaved by \hat{I}^3 -secretase complex. Biochemical and Biophysical Research Communications, 2012, 417, 462-467.	2.1	36
95	Aberrant expression of tumor suppressors CADM1 and 4.1B in invasive lesions of primary breast cancer. Breast Cancer, 2012, 19, 242-252.	2.9	66
96	Expression of a splicing variant of the <i><scp>CADM1</scp></i> specific to small cell lung cancer. Cancer Science, 2012, 103, 1051-1057.	3.9	22
97	Aberrations of a cell adhesion molecule CADM4 in renal clear cell carcinoma. International Journal of Cancer, 2012, 130, 1329-1337.	5.1	54
98	Transcriptional regulation of the CADM1 gene by retinoic acid during the neural differentiation of murine embryonal carcinoma P19 cells. Genes To Cells, 2011, 16, 791-802.	1.2	12
99	CADM1 Interacts with Tiam1 and Promotes Invasive Phenotype of Human T-cell Leukemia Virus Type I-transformed Cells and Adult T-cell Leukemia Cells. Journal of Biological Chemistry, 2010, 285, 15511-15522.	3.4	61
100	Tumor suppressor CADM1 is involved in epithelial cell structure. Biochemical and Biophysical Research Communications, 2009, 390, 977-982.	2.1	56
101	Expression of a Soluble Isoform of Cell Adhesion Molecule 1 in the Brain and Its Involvement in Directional Neurite Outgrowth. American Journal of Pathology, 2009, 174, 2278-2289.	3.8	33
102	Expression of $\langle i \rangle$ TSLC1 $\langle i \rangle$, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. International Journal of Cancer, 2008, 123, 2087-2094.	5.1	48
103	Involvement of the SgIGSF/Necl-2 adhesion molecule in degranulation of mesenteric mast cells. Journal of Neuroimmunology, 2007, 184, 209-213.	2.3	14
104	Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 2006, 106, 1751-1758.	4.1	75
105	Promoter hypermethylation of the potential tumor suppressorDAL-1/4.1Bgene in renal clear cell carcinoma. International Journal of Cancer, 2006, 118, 916-923.	5.1	71
106	Disruption of Spermatogenic Cell Adhesion and Male Infertility in Mice Lacking TSLC1/IGSF4, an Immunoglobulin Superfamily Cell Adhesion Molecule. Molecular and Cellular Biology, 2006, 26, 3610-3624.	2.3	91
107	Loss of TSLC1 expression in lung adenocarcinoma: Relationships with histological subtypes, sex and prognostic significance. Cancer Science, 2005, 96, 480-486.	3.9	42
108	Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Science, 2005, 96, 543-552.	3.9	152

#	Article	IF	CITATIONS
109	Promoter Methylation of DAL-1/4.1B Predicts Poor Prognosis in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2005, 11, 2954-2961.	7. O	76
110	Tumor Suppressor in Lung Cancer (TSLC)1 Suppresses Epithelial Cell Scattering and Tubulogenesis. Journal of Biological Chemistry, 2005, 280, 42164-42171.	3 . 4	34
111	Loss of Tumor Suppressor in Lung Cancer-1 (TSLC1) Expression in Meningioma Correlates with Increased Malignancy Grade and Reduced Patient Survival. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1015-1027.	1.7	61
112	Fine mapping of the 11q22–23 tumor suppressive region and involvement ofTSLC1 in nasopharyngeal carcinoma. International Journal of Cancer, 2004, 112, 628-635.	5.1	46
113	Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood, 2004, 105, 1204-1213.	1.4	164
114	Association of a lung tumor suppressor TSLC1 with MPP3, a human homologue of Drosophila tumor suppressor Dlg. Oncogene, 2003, 22, 6160-6165.	5.9	72
115	Promoter methylation of the $\langle i \rangle$ TSLC1 $\langle j \rangle$ gene in advanced lung tumors and various cancer cell lines. International Journal of Cancer, 2003, 107, 53-59.	5.1	105
116	Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Research, 2003, 63, 6320-6.	0.9	85
117	The cytoplasmic domain is critical to the tumor suppressor activity of TSLC1 in non-small cell lung cancer. Cancer Research, 2003, 63, 7979-85.	0.9	43
118	The Tumor Suppressor Protein TSLC1 Is Involved in Cell-Cell Adhesion. Journal of Biological Chemistry, 2002, 277, 31014-31019.	3.4	148
119	Promoter Methylation of TSLC 1 and Tumor Suppression by Its Gene Product in Human Prostate Cancer. Japanese Journal of Cancer Research, 2002, 93, 605-609.	1.7	94
120	Hypermethylation of the TSLC1 Gene Promoter in Primary Gastric Cancers and Gastric Cancer Cell Lines. Japanese Journal of Cancer Research, 2002, 93, 857-860.	1.7	65
121	Functional cloning of a tumor suppressor gene, TSLC1, in human non-small cell lung cancer. Oncogene, 2002, 21, 6936-6948.	5.9	54
122	Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer. Cancer Research, 2002, 62, 5129-33.	0.9	148
123	TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, 2001, 27, 427-430.	21.4	402
124	Isolation of the TSLL1 and TSLL2 genes, members of the tumor suppressor TSLC1 gene family encoding transmembrane proteins. Oncogene, 2001, 20, 5401-5407.	5.9	66
125	A 2-Mb Sequence-Ready Contig Map and a Novel Immunoglobulin Superfamily Gene IGSF4 in the LOH Region of Chromosome 11q23.2. Genomics, 1999, 62, 139-146.	2.9	108
126	Accumulation of genetic alterations and their significance in each primary human cancer and cell line. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 400, 421-437.	1.0	22

#	Article	IF	CITATIONS
127	Genetic alterations in human pancreatic cancer. Journal of Hepato-Biliary-Pancreatic Surgery, 1997, 4, 283-290.	2.0	5
128	Random Segregation of DNA Strands in Epidermal Basal Cells. Japanese Journal of Cancer Research, 1989, 80, 637-642.	1.7	27
129	Family trees representing the finitely proliferative nature of cultured rat liver cells Cell Structure and Function, 1983, 8, 293-301.	1.1	4