Taek-Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748487/publications.pdf

Version: 2024-02-01

153 papers 8,058 citations

43 h-index 86 g-index

157 all docs

157 docs citations

157 times ranked

10333 citing authors

#	Article	IF	CITATIONS
1	Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2107361.	21.0	89
2	Enlarged tensile strain at edge of flexible substrate due to anticlastic curvature. Microelectronics Reliability, 2022, 130, 114485.	1.7	2
3	Highâ€Performance, Flexible NO ₂ Chemiresistors Achieved by Design of Imineâ€Incorporated nâ€Type Conjugated Polymers. Advanced Science, 2022, 9, e2200270.	11.2	28
4	<i>Egr1</i> is a 3D matrix–specific mediator of mechanosensitive stem cell lineage commitment. Science Advances, 2022, 8, eabm4646.	10.3	20
5	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	16
6	Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Science Advances, 2022, 8, .	10.3	35
7	Thermomechanical Behavior of Poly(3-hexylthiophene) Thin Films on the Water Surface. ACS Omega, 2022, 7, 19706-19713.	3.5	4
8	Siloxane Hybrid Material-Encapsulated Highly Robust Flexible \hat{l} /4LEDs for Biocompatible Lighting Applications. ACS Applied Materials & Enterfaces, 2022, 14, 28258-28269.	8.0	9
9	Improving the Sensitivity of the Mechanoluminescence Composite through Functionalization for Structural Health Monitoring. ACS Applied Materials & Structural Health Monitoring.	8.0	12
10	Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Science Advances, 2022, 8, .	10.3	63
11	Mechanical properties of organic semiconductors for flexible electronics., 2021, , 199-223.		3
12	Efficient, Thermally Stable, and Mechanically Robust Allâ€Polymer Solar Cells Consisting of the Same Benzodithiophene Unitâ€Based Polymer Acceptor and Donor with High Molecular Compatibility. Advanced Energy Materials, 2021, 11, 2003367.	19.5	122
13	Ester-functionalized, wide-bandgap derivatives of PM7 for simultaneous enhancement of photovoltaic performance and mechanical robustness of all-polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 2775-2783.	10.3	23
14	Selective Defect Passivation and Topographical Control of 4â€Dimethylaminopyridine at Grain Boundary for Efficient and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003382.	19.5	82
15	Flexible-spacer incorporated polymer donors enable superior blend miscibility for high-performance and mechanically-robust polymer solar cells. Energy and Environmental Science, 2021, 14, 4067-4076.	30.8	98
16	A Flashâ€Induced Robust Cu Electrode on Glass Substrates and Its Application for Thinâ€Film μ LEDs. Advanced Materials, 2021, 33, e2007186.	21.0	15
17	Unveiling the Annealing-Dependent Mechanical Properties of Freestanding Indium Tin Oxide Thin Films. ACS Applied Materials & 2021, 13, 16650-16659.	8.0	18
18	Controlling Neutral Plane of Flexible Substrates by Asymmetric Impregnation of Glass Fabric for Protecting Brittle Films on Foldable Electronics. Advanced Engineering Materials, 2021, 23, 2001280.	3.5	17

#	Article	IF	Citations
19	Enhanced Triboelectric Nanogenerator Based on Tungsten Disulfide via Thiolated Ligand Conjugation. ACS Applied Materials & Disulfide Via Thiolated Ligand Conjugation.	8.0	25
20	High-Molecular-Weight Electroactive Polymer Additives for Simultaneous Enhancement of Photovoltaic Efficiency and Mechanical Robustness in High-Performance Polymer Solar Cells. Jacs Au, 2021, 1, 612-622.	7.9	40
21	Tubular Hygromechanical Polymeric Brake for Soft and Compact Wearable Robots. ACS Applied Polymer Materials, 2021, 3, 3206-3213.	4.4	4
22	Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nature Communications, 2021, 12, 2864.	12.8	42
23	A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nature Biomedical Engineering, 2021, 5, 772-782.	22.5	100
24	Quantification of Performance Variation and Crack Evolution of Bond-Wire Interconnects Under Harsh Temperature Environments by S-Parameter Analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 990-998.	2.5	3
25	Intrinsically Stretchable Organic Solar Cells with Efficiencies of over 11%. ACS Energy Letters, 2021, 6, 2512-2518.	17.4	69
26	Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Science Advances, 2021, 7, .	10.3	89
27	Liquid-assisted adhesion control of graphene–copper interface for damage-free mechanical transfer. Applied Surface Science, 2021, 551, 149229.	6.1	9
28	Programmable Liquid Crystal Defect Arrays via Electric Field Modulation for Mechanically Functional Liquid Crystal Networks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36253-36261.	8.0	15
29	Simultaneous Enhanced Efficiency and Stability of Perovskite Solar Cells Using Adhesive Fluorinated Polymer Interfacial Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35595-35605.	8.0	20
30	Comparison of the mechanical properties of polymer blend and main-chain conjugated copolymer films with donor–acceptor heterojunctions. Chemical Engineering Journal, 2021, 415, 128952.	12.7	8
31	Intrinsic swelling behavior of free-standing nanoporous ionomer-bound carbon films. Polymer Testing, 2021, 100, 107241.	4.8	1
32	Elongation improvement of transparent and flexible surface protective coating using polydimethylsiloxane-anchored epoxy-functionalized siloxane hybrid composite for reliable out-foldable displays. Composites Part B: Engineering, 2021, 225, 109313.	12.0	16
33	Enhanced stretchability of metal/interlayer/metal hybrid electrode. Nanoscale, 2021, 13, 4543-4550.	5.6	6
34	Capillaryâ€Forceâ€Driven Switchable Delamination of Nanofilms and Its Application to Green Selective Transfer. Advanced Materials Technologies, 2021, 6, 2001082.	5.8	4
35	Electrical resistance change in thermally reconfigured nanoporous ionomer-bound carbon films. Journal of Materials Chemistry A, 2021, 9, 13019-13025.	10.3	2
36	Side Chain Engineered Naphthalene Diimide-Based Terpolymer for Efficient and Mechanically Robust All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 1070-1081.	6.7	46

3

#	Article	lF	CITATIONS
37	Self-Powered Flexible Full-Color Display via Dielectric-Tuned Hybrimer Triboelectric Nanogenerators. ACS Energy Letters, 2021, 6, 4097-4107.	17.4	15
38	Donor–Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells. ACS Nano, 2021, 15, 19970-19980.	14.6	38
39	High-Performance Ni/Pt Composite Catalytic Anode with Ultra-Low Pt Loading for Low-Temperature Solid Oxide Fuel Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 141-150.	4.9	2
40	Effects of Thickness and Crystallographic Orientation on Tensile Properties of Thinned Silicon Wafers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 296-303.	2.5	9
41	Origin of the High Donor–Acceptor Composition Tolerance in Device Performance and Mechanical Robustness of All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 582-594.	6.7	68
42	An Interlocking Fibrillar Polymer Layer for Mechanical Stability of Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001425.	3.7	9
43	Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy and Environmental Science, 2020, 13, 4854-4861.	30.8	137
44	Highly robust nanostructured carbon films by thermal reconfiguration of ionomer binding. Journal of Materials Chemistry A, 2020, 8, 24763-24773.	10.3	4
45	Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. Npj Flexible Electronics, 2020, 4, .	10.7	41
46	Stretchable OLEDs: Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stressâ€Relieving Bilayer Structure (Adv. Mater. Technol. 11/2020). Advanced Materials Technologies, 2020, 5, 2070068.	5.8	0
47	A Study on the Dynamic Bending Property of Chip-on-Flex Assembly Using Anchoring Polymer Layer Anisotropic Conductive Films. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 941-948.	2.5	8
48	Highly Mobile Levitating Soft Actuator Driven by Multistimuliâ€Responses. Advanced Materials Interfaces, 2020, 7, 2001051.	3.7	10
49	Desolvationâ€Triggered Versatile Transferâ€Printing of Pure BN Films with Thermal–Optical Dual Functionality. Advanced Materials, 2020, 32, 2002099.	21.0	5
50	Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stressâ€Relieving Bilayer Structure. Advanced Materials Technologies, 2020, 5, 2000494.	5.8	23
51	Creation of Curved Nanostructures Using Soft-Materials-Derived Lithography. Nanomaterials, 2020, 10, 2414.	4.1	2
52	Humanâ€Palmâ€Inspired Artificial Skin Material Enhances Operational Functionality of Hand Manipulation. Advanced Functional Materials, 2020, 30, 2002360.	14.9	14
53	Artificial Skin: Humanâ€Palmâ€Inspired Artificial Skin Material Enhances Operational Functionality of Hand Manipulation (Adv. Funct. Mater. 25/2020). Advanced Functional Materials, 2020, 30, 2070161.	14.9	1
54	Triad-type, multi-functional compatibilizers for enhancing efficiency, stability and mechanical robustness of polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 13522-13531.	10.3	16

#	Article	IF	Citations
55	A Study on the Flexible Chip-on-Fabric Assemblies Using Anisotropic Conductive Films and Metal-Laminated Fabric Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 360-367.	2.5	1
56	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
57	A Study on the Fabric Substrates With Fine-Pitch Laminated Cu Metal Patterns Using B-Stage Adhesive Films. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 176-183.	2.5	0
58	Effects of Post-annealing and Co Interlayer Between SiNx and Cu on the Interfacial Adhesion Energy for Advanced Cu Interconnections. Electronic Materials Letters, 2020, 16, 311-320.	2.2	2
59	Design of ultrathin OLEDs having oxide-based transparent electrodes and encapsulation with sub-mm bending radius. Organic Electronics, 2020, 82, 105704.	2.6	29
60	Mechanical and Electrical Reliability Analysis of Flexible Si Complementary Metal-Oxide-Semiconductor Integrated Circuit. Journal of Nanoscience and Nanotechnology, 2019, 19, 6473-6480.	0.9	0
61	Regioregular- <i>block</i> -Regiorandom Poly(3-hexylthiophene) Copolymers for Mechanically Robust and High-Performance Thin-Film Transistors. Macromolecules, 2019, 52, 7721-7730.	4.8	40
62	Aqueous-Soluble Naphthalene Diimide-Based Polymer Acceptors for Efficient and Air-Stable All-Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45038-45047.	8.0	42
63	Influence of Acceptor Type and Polymer Molecular Weight on the Mechanical Properties of Polymer Solar Cells. Chemistry of Materials, 2019, 31, 9057-9069.	6.7	102
64	Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. ACS Applied Materials & Interfaces, 2019, 11, 23639-23648.	8.0	155
65	Thermal expansion behavior of thin films expanding freely on water surface. Scientific Reports, 2019, 9, 7071.	3.3	20
66	Importance of Critical Molecular Weight of Semicrystalline n-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films. Chemistry of Materials, 2019, 31, 3163-3173.	6.7	115
67	Direct Visualization of Cross-Sectional Strain Distribution in Flexible Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13416-13422.	8.0	23
68	Role of Crack Deflection on Rate Dependent Mechanical Transfer of Multilayer Graphene and Its Application to Transparent Electrodes. ACS Applied Nano Materials, 2019, 2, 1980-1985.	5.0	13
69	Low-Temperature and Corrosion-Resistant Gas Diffusion Multibarrier with UV and Heat Rejection Capabilityâ \in "A Strategy to Ensure Reliability of Organic Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16776-16784.	8.0	15
70	Effects of the Materials Properties of Epoxy Molding Films (EMFs) on Fan-Out Packages (FOPs) Characteristics. , 2019, , .		1
71	Effect of High Film Stress of Mo Source and Drain Electrodes on Electrical Characteristics of Al Doped InZnSnO TFTs. IEEE Electron Device Letters, 2019, 40, 1760-1763.	3.9	5
72	Wireless powered wearable micro light-emitting diodes. Nano Energy, 2019, 55, 454-462.	16.0	83

#	Article	IF	CITATIONS
73	Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy, 2019, 58, 211-219.	16.0	88
74	Effects of graphene oxide on the electromigration lifetime of lead-free solder joints. Journal of Materials Science: Materials in Electronics, 2019, 30, 2334-2341.	2.2	8
75	Comparative Study of the Mechanical Properties of All-Polymer and Fullerene–Polymer Solar Cells: The Importance of Polymer Acceptors for High Fracture Resistance. Chemistry of Materials, 2018, 30, 2102-2111.	6.7	79
76	Direct Graphene Transfer and Its Application to Transfer Printing Using Mechanically Controlled, Large Area Graphene/Copper Freestanding Layer. Advanced Functional Materials, 2018, 28, 1707102.	14.9	40
77	Mechanically robust and high-performance ternary solar cells combining the merits of all-polymer and fullerene blends. Journal of Materials Chemistry A, 2018, 6, 4494-4503.	10.3	54
78	A High Aspect Ratio Serpentine Structure for Use As a Strainâ€Insensitive, Stretchable Transparent Conductor. Small, 2018, 14, 1702818.	10.0	32
79	Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1704435.	14.9	67
80	Design of Magnetic Force Field for Trajectory Control of Levitated Diamagnetic Graphite. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 341-347.	4.9	12
81	Layer-by-Layer Assembly of Free-Standing Nanofilms by Controlled Rolling. Langmuir, 2018, 34, 5831-5836.	3.5	12
82	Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules, 2018, 51, 2572-2579.	4.8	104
83	Stress Analysis of Rollable OLED Display Considering Boundary Conditions Based on Finite Element Method. , 2018, , .		0
84	Effect of the acceptor types on the fracture behavior of polymer solar cells. , 2018, , .		0
85	Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€Interface Engineering. Advanced Materials, 2018, 30, e1805091.	21.0	65
86	Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale, 2018, 10, 16069-16078.	5.6	23
87	Effects of ACFs Modulus and Adhesion Strength on the Bending Reliability of CIF (Chip-in-Flex) Packages at Humid Environment. , 2018, , .		3
88	Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells. ACS Applied Materials & Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells.	8.0	122
89	A quantitative strain analysis of a flexible single-crystalline silicon membrane. Applied Physics Letters, 2017, 110, 033105.	3.3	10
90	Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 8855-8862.	8.0	136

#	Article	IF	Citations
91	Electromechanical diagnostic method for monitoring cracks in polymer electrolyte fuel cell electrodes. International Journal of Hydrogen Energy, 2017, 42, 11644-11653.	7.1	8
92	Understanding mechanical behavior and reliability of organic electronic materials. MRS Bulletin, 2017, 42, 115-123.	3.5	39
93	Mechanical Properties of Polymer–Fullerene Bulk Heterojunction Films: Role of Nanomorphology of Composite Films. Chemistry of Materials, 2017, 29, 3954-3961.	6.7	50
94	Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics. Nanotechnology, 2017, 28, 194002.	2.6	38
95	Mechanism of warpage orientation rotation due to viscoelastic polymer substrates during thermal processing. Microelectronics Reliability, 2017, 73, 136-145.	1.7	10
96	Effect of anisotropic thermo-elastic properties of woven-fabric laminates on diagonal warpage of thin package substrates. Composite Structures, 2017, 176, 973-981.	5.8	8
97	Plasmonicâ€Tuned Flash Cu Nanowelding with Ultrafast Photochemicalâ€Reducing and Interlocking on Flexible Plastics. Advanced Functional Materials, 2017, 27, 1701138.	14.9	98
98	Pâ€133: Optimization of Multilayer Inorganic/Organic Thin Film Structure for Foldable Barrier Films. Digest of Technical Papers SID International Symposium, 2017, 48, 1757-1760.	0.3	1
99	FEM simulation of warpage orientation change of FRP polymer substrate during thermal processing. , 2017, , .		2
100	Effect of anisotropic mechanical properties of woven composite substrates on warpage orientation of printed circuit boards. , 2017, , .		0
101	Solution-Assembled Blends of Regioregularity-Controlled Polythiophenes for Coexistence of Mechanical Resilience and Electronic Performance. ACS Applied Materials & Diterfaces, 2017, 9, 14120-14128.	8.0	25
102	Facilitated embedding of silver nanowires into conformally-coated iCVD polymer films deposited on cloth for robust wearable electronics. Nanoscale, 2017, 9, 3399-3407.	5.6	16
103	Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers. ACS Applied Materials & Interfaces, 2017, 9, 37395-37401.	8.0	20
104	Effects of Anisotropic Conductive Films (ACFs) Gap Heights on the Bending Reliability of Chip-In-Flex (CIF) Packages for Wearable Electronics Applications. , 2017, , .		2
105	Mechanical Stability Analysis via Neutral Mechanical Plane for Highâ€Performance Flexible Si Nanomembrane FDSOI Device. Advanced Materials Interfaces, 2017, 4, 1700618.	3.7	9
106	Temperature-Controlled Direct Imprinting of Ag Ionic Ink: Flexible Metal Grid Transparent Conductors with Enhanced Electromechanical Durability. Scientific Reports, 2017, 7, 11220.	3.3	16
107	The Effect of Anisotropic Conductive Films Adhesion on the Bending Reliability of Chip-in-Flex Packages for Wearable Electronics Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 1583-1591.	2.5	21
108	Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces. ACS Nano, 2017, 11, 11642-11652.	14.6	16

#	Article	IF	Citations
109	Moisture Effects on NCF Adhesion and Solder Joint Reliability of Chip-on-Board Assembly Using Cu Pillar/Sn–Ag Microbump. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 371-378.	2.5	1
110	Flashâ€Induced Selfâ€Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester. Advanced Materials, 2017, 29, 1603473.	21.0	207
111	Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 19031-19037.	8.0	44
112	Effect of Nanofiber Orientation on Nanofiber Solder Anisotropic Conductive Films Joint Properties and Bending Reliability of Flex-on-Flex Assembly. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1317-1329.	2.5	23
113	Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 15391-15398.	8.0	21
114	Contact-free thermal expansion measurement of very soft elastomers using digital image correlation. Polymer Testing, 2016, 51, 181-189.	4.8	35
115	Prediction of time-dependent swelling of flexible polymer substrates using hygro-mechanical finite element simulations. Soft Matter, 2016, 12, 4135-4141.	2.7	13
116	Effects of ACFs Adhesion on the Bending Reliability of Chip-in-Flex Packages for Wearable Electronics Applications. , 2016, , .		3
117	Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7, 11791.	12.8	163
118	Flexural and tensile moduli of flexible FR4 substrates. Polymer Testing, 2016, 53, 70-76.	4.8	23
119	Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16922-16931.	8.0	404
120	Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives. ACS Applied Materials & Samp; Interfaces, 2016, 8, 302-310.	8.0	142
121	Bending Properties of Anisotropic Conductive Films Assembled Chip-in-Flex Packages for Wearable Electronics Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 208-215.	2.5	31
122	Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 5679-5686.	8.0	45
123	Control of Reversible Self-Bending Behavior in Responsive Janus Microstrips. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 8782-8788.	8.0	28
124	Effects of the Mechanical Properties of Polymer Resin and the Conductive Ball Types of Anisotropic Conductive Films on the Bending Properties of Chip-in-Flex Package. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 200-207.	2.5	15
125	Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices. ACS Nano, 2016, 10, 1539-1545.	14.6	47
126	Enhancing Adhesion of Screenâ€Printed Silver Nanopaste Films. Advanced Materials Interfaces, 2015, 2, 1500283.	3.7	19

#	Article	IF	CITATIONS
127	Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates. Polymers, 2015, 7, 985-1004.	4.5	25
128	Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15426-15431.	7.1	87
129	Enhancing Mechanical Properties of Highly Efficient Polymer Solar Cells Using Size-Tuned Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2668-2676.	8.0	16
130	Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy and Environmental Science, 2015, 8, 1224-1230.	30.8	222
131	Adhesion improvement of graphene/copper interface using UV/ozone treatments. Thin Solid Films, 2015, 584, 170-175.	1.8	28
132	Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules, 2015, 48, 4339-4346.	4.8	194
133	Properties and Reliability of Solder Microbump Joints Between Si Chips and a Flexible Substrate. Journal of Electronic Materials, 2015, 44, 2458-2466.	2.2	13
134	Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration at the Triple Phase Boundary. ACS Applied Materials & Direct Observation of Nanoscale Pt Electrode Agglomeration of Nanosca	8.0	26
135	Flexible, highly efficient all-polymer solar cells. Nature Communications, 2015, 6, 8547.	12.8	740
136	Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH ₃ NH ₃ Pbl ₃ HTM interface. Journal of Materials Chemistry A, 2015, 3, 22176-22182.	10.3	80
137	Ultra-thin chip-in-flex (CIF) technology using anisotropic conductive films (ACFs) for wearable electronics applications. , 2015, , .		5
138	Penetration and lateral diffusion characteristics of polycrystalline graphene barriers. Nanoscale, 2014, 6, 151-156.	5 . 6	41
139	Large area multi-stacked lithium-ion batteries for flexible and rollable applications. Journal of Materials Chemistry A, 2014, 2, 10862-10868.	10.3	48
140	Superstrong encapsulated monolayer graphene by the modified anodic bonding. Nanoscale, 2014, 6, 547-554.	5.6	13
141	Architectural Engineering of Rod–Coil Compatibilizers for Producing Mechanically and Thermally Stable Polymer Solar Cells. ACS Nano, 2014, 8, 10461-10470.	14.6	82
142	Effects of hydrophobic agent content in macro-porous substrates on the fracture behavior of the gas diffusion layer for proton exchange membrane fuel cells. Journal of Power Sources, 2014, 270, 342-348.	7.8	13
143	High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach. Journal of the Microelectronics and Packaging Society, 2014, 21, 59-64.	0.1	4
144	Tensile testing of ultra-thin films on water surface. Nature Communications, 2013, 4, 2520.	12.8	169

#	Article	IF	Citations
145	Wearable Textile Battery Rechargeable by Solar Energy. Nano Letters, 2013, 13, 5753-5761.	9.1	400
146	Lithium-Ion Batteries: Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1570-1570.	21.0	8
147	Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process. Applied Physics Letters, 2013, 103, .	3.3	13
148	Roomâ€Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conductingâ€Polymerâ€Assisted Joining for a Flexible Touchâ€Panel Application. Advanced Functional Materials, 2013, 23, 4171-4176.	14.9	449
149	Mechanical reliability of Cu/low-k interconnects and underfill. , 2012, , .		0
150	Interfacial toughening of solution processed Ag nanoparticle thin films by organic residuals. Nanotechnology, 2012, 23, 485704.	2.6	34
151	Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process. Nano Letters, 2012, 12, 1448-1452.	9.1	352
152	Development of inclined conductive bump (ICB) for flip-chip interconnection. , 2011, , .		1
153	Ultrathin, Flexible, and Transparent Oxide Thinâ€Film Transistors by Delamination and Transfer Methods for Deformable Displays. Advanced Materials Technologies, 0, , 2100431.	5.8	3