## Chao Wu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3748417/publications.pdf Version: 2024-02-01



Снао Мл

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 2D anionic nanosheet additive for stable Zn metal anodes in aqueous electrolyte. Chemical<br>Engineering Journal, 2022, 430, 133042.                                                    | 12.7 | 22        |
| 2  | Understanding the morphology evolution of 1D BiVO <sub>4</sub> nanoarrays from nanorods to nanocones with enhanced photocatalytic performance. CrystEngComm, 2022, 24, 3297-3306.       | 2.6  | 6         |
| 3  | Carbon-based current collector materials for sodium metal anodes. New Carbon Materials, 2022, 37, 93-108.                                                                               | 6.1  | 11        |
| 4  | Double interface regulation: Toward highly stable lithium metal anode with high utilization.<br>InformaÄnÃ-MateriA¡ly, 2022, 4, .                                                       | 17.3 | 21        |
| 5  | Recent Progress on Feâ€Based Single/Dualâ€Atom Catalysts for Zn–Air Batteries. Small, 2022, 18, e2106635.                                                                               | 10.0 | 47        |
| 6  | Towards stable sodium metal battery with high voltage output through dual electrolyte design.<br>Energy Storage Materials, 2022, 48, 466-474.                                           | 18.0 | 10        |
| 7  | An in-situ generated Bi-based sodiophilic substrate with high structural stability for<br>high-performance sodium metal batteries. Journal of Energy Chemistry, 2022, 71, 595-603.      | 12.9 | 7         |
| 8  | Honeycomb-like 3D carbon skeletons with embedded phosphorus-rich phosphide nanoparticles as advanced anodes for lithium-ion batteries. Nanoscale, 2022, 14, 8744-8752.                  | 5.6  | 6         |
| 9  | Stable sodium metal anodes enabled by an in-situ generated mixed-ion/electron-conducting interface.<br>Chemical Engineering Journal, 2022, 446, 136917.                                 | 12.7 | 5         |
| 10 | Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 51, 391-399. | 18.0 | 31        |
| 11 | 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization. Nano Energy, 2021, 79, 105457.                              | 16.0 | 46        |
| 12 | Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chemical Engineering Journal, 2021, 416, 128062.            | 12.7 | 75        |
| 13 | Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano<br>Letters, 2021, 21, 619-627.                                                    | 9.1  | 58        |
| 14 | An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte.<br>Journal of Materials Chemistry A, 2021, 9, 4253-4261.                          | 10.3 | 67        |
| 15 | Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical<br>Science, 2021, 12, 8945-8966.                                                  | 7.4  | 72        |
| 16 | Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.               | 30.8 | 314       |
| 17 | Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolk–shell nanoparticles. Journal of Materials Chemistry A, 2021, 9, 13200-13208.        | 10.3 | 21        |
| 18 | Bi Nanoparticles Embedded in 2D Carbon Nanosheets as an Interfacial Layer for Advanced Sodium<br>Metal Anodes. Small, 2021, 17, e2007578.                                               | 10.0 | 28        |

Снао Wu

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dendritesâ€Free Zn Metal Anodes Enabled by an Artificial Protective Layer Filled with 2D Anionic<br>Nanosheets. Small Methods, 2021, 5, e2100650.                                                                                                    | 8.6  | 50        |
| 20 | An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable<br>electrolyte. Energy Storage Materials, 2021, 42, 145-153.                                                                                     | 18.0 | 42        |
| 21 | Highly Stable Lithium/Sodium Metal Batteries with High Utilization Enabled by a Holey<br>Two-Dimensional N-Doped TiNb <sub>2</sub> O <sub>7</sub> Host. Nano Letters, 2021, 21, 10453-10461.                                                         | 9.1  | 18        |
| 22 | Computable Bulk and Interfacial Electronic Structure Features as Proxies for Dielectric Breakdown of Polymers. ACS Applied Materials & amp; Interfaces, 2020, 12, 37182-37187.                                                                       | 8.0  | 21        |
| 23 | Core–Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes.<br>Nano Letters, 2020, 20, 4464-4471.                                                                                                                  | 9.1  | 75        |
| 24 | An Inâ€Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Znâ€ <del>l</del> on Batteries. Advanced<br>Materials, 2020, 32, e2003021.                                                                                                     | 21.0 | 707       |
| 25 | Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer.<br>Angewandte Chemie - International Edition, 2020, 59, 6596-6600.                                                                                  | 13.8 | 89        |
| 26 | Dendriteâ€Free Sodium Metal Anodes Enabled by a Sodium Benzenedithiolateâ€Rich Protection Layer.<br>Angewandte Chemie, 2020, 132, 6658-6662.                                                                                                         | 2.0  | 33        |
| 27 | Graphene-Encapsulated CuP <sub>2</sub> : A Promising Anode Material with High Reversible Capacity and Superior Rate-Performance for Sodium-Ion Batteries. Nano Letters, 2019, 19, 2575-2582.                                                         | 9.1  | 60        |
| 28 | Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating.<br>Journal of Materials Chemistry A, 2019, 7, 25369-25376.                                                                                        | 10.3 | 35        |
| 29 | The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage.<br>Small, 2018, 14, e1703671.                                                                                                                          | 10.0 | 106       |
| 30 | Effect of Cu-Ti-C reaction composition on reinforcing particles size of TiC x /Cu composites. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 43-48.                                                                    | 1.0  | 8         |
| 31 | Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.                                                                                     | 18.0 | 50        |
| 32 | New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting<br>a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.                                                               | 9.1  | 386       |
| 33 | Challenges and Perspectives for NASICONâ€Type Electrode Materials for Advanced Sodiumâ€ion Batteries.<br>Advanced Materials, 2017, 29, 1700431.                                                                                                      | 21.0 | 499       |
| 34 | A High Power–High Energy<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> F <sub>3</sub> Sodium Cathode:<br>Investigation of Transport Parameters, Rational Design and Realization. Chemistry of Materials, 2017,<br>29. 5207-5215. | 6.7  | 141       |
| 35 | Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure,<br>Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.                                                                             | 21.0 | 122       |
| 36 | High Performance Graphene/Ni <sub>2</sub> P Hybrid Anodes for Lithium and Sodium Storage through<br>3D Yolk–Shellâ€Like Nanostructural Design. Advanced Materials, 2017, 29, 1604015.                                                                | 21.0 | 220       |

Снао Wu

| #  | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Peapodâ€Like Carbonâ€Encapsulated Cobalt Chalcogenide Nanowires as Cycleâ€Stable and Highâ€Rate<br>Materials for Sodiumâ€Ion Anodes. Advanced Materials, 2016, 28, 7276-7283.                                                                                                                              | 21.0 | 237       |
| 38 | Self‣upported Nanotube Arrays of Sulfurâ€Doped TiO <sub>2</sub> Enabling Ultrastable and Robust<br>Sodium Storage. Advanced Materials, 2016, 28, 2259-2265.                                                                                                                                                | 21.0 | 457       |
| 39 | MOFâ€Derived Hollow Co <sub>9</sub> S <sub>8</sub> Nanoparticles Embedded in Graphitic Carbon<br>Nanocages with Superior Liâ€ion Storage. Small, 2016, 12, 2354-2364.                                                                                                                                      | 10.0 | 306       |
| 40 | Generalizable Synthesis of Metal‣ulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered<br>Structures as Advanced Electrodes for Lithium Storage. Advanced Materials, 2016, 28, 174-180.                                                                                                           | 21.0 | 145       |
| 41 | Superior Sodium Storage in Na <sub>2</sub> Ti <sub>3</sub> O <sub>7</sub> Nanotube Arrays through<br>Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.                                                                                                                                     | 19.5 | 219       |
| 42 | Grapheneâ€Protected 3D Sbâ€based Anodes Fabricated via Electrostatic Assembly and Confinement<br>Replacement for Enhanced Lithium and Sodium Storage. Small, 2015, 11, 6026-6035.                                                                                                                          | 10.0 | 87        |
| 43 | Synthesizing Porous NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Nanoparticles Embedded in 3D<br>Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. ACS Nano, 2015, 9, 6610-6618.                                                                                                 | 14.6 | 260       |
| 44 | 3D V <sub>6</sub> O <sub>13</sub> Nanotextiles Assembled from Interconnected Nanogrooves as<br>Cathode Materials for High-Energy Lithium Ion Batteries. Nano Letters, 2015, 15, 1388-1394.                                                                                                                 | 9.1  | 194       |
| 45 | Snâ€Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for Highâ€Rate<br>and Long Life Liâ€ion Batteries. Advanced Functional Materials, 2015, 25, 3488-3496.                                                                                                               | 14.9 | 156       |
| 46 | Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture<br>for advanced flexible Li–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9438-9445.                                                                                                      | 10.3 | 51        |
| 47 | An Advanced Sodiumâ€lon Battery Composed of Carbon Coated<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> in a Porous Graphene Network.<br>Advanced Materials, 2015, 27, 6670-6676.                                                                                                      | 21.0 | 448       |
| 48 | Uniform yolk–shell Sn <sub>4</sub> P <sub>3</sub> @C nanospheres as high-capacity and cycle-stable<br>anode materials for sodium-ion batteries. Energy and Environmental Science, 2015, 8, 3531-3538.                                                                                                      | 30.8 | 401       |
| 49 | Three-Dimensional Highly Conductive Graphene–Silver Nanowire Hybrid Foams for Flexible and<br>Stretchable Conductors. ACS Applied Materials & Interfaces, 2014, 6, 21026-21034.                                                                                                                            | 8.0  | 118       |
| 50 | Role of interface in highly filled epoxy/BaTiO <sub>3</sub> nanocomposites. Part II- effect of nanoparticle surface chemistry on processing, thermal expansion, energy storage and breakdown strength of the nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 480-487 | 2.9  | 43        |
| 51 | Role of interface in highly filled epoxy/BaTiO <sub>3</sub> nanocomposites. Part I-correlation<br>between nanoparticle surface chemistry and nanocomposite dielectric property. IEEE Transactions on<br>Dielectrics and Electrical Insulation, 2014, 21, 467-479.                                          | 2.9  | 60        |
| 52 | A crosslinking method of UHMWPE irradiated by electron beam using TMPTMA as radiosensitizer.<br>Journal of Applied Polymer Science, 2013, 127, 111-119.                                                                                                                                                    | 2.6  | 16        |
| 53 | Mechanically Flexible and Multifunctional Polymerâ€Based Graphene Foams for Elastic Conductors and<br>Oilâ€Water Separators. Advanced Materials, 2013, 25, 5658-5662.                                                                                                                                      | 21.0 | 358       |
| 54 | Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Advances, 2013, 3, 17373.                                                                                                                                                         | 3.6  | 176       |

Снао Wu

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale, 2013, 5, 3847.                                                                                                            | 5.6  | 182       |
| 56 | Highly Conductive Nanocomposites with Threeâ€Dimensional, Compactly Interconnected Graphene<br>Networks via a Selfâ€Assembly Process. Advanced Functional Materials, 2013, 23, 506-513.                                                                                       | 14.9 | 200       |
| 57 | Functional graphene for high dielectric performance polymer composites. , 2013, , .                                                                                                                                                                                           |      | 0         |
| 58 | Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites.<br>Macromolecular Research, 2012, 20, 816-826.                                                                                                                                     | 2.4  | 100       |
| 59 | Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. Journal of Materials Chemistry, 2012, 22, 7010.                                                                                      | 6.7  | 235       |
| 60 | Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene<br>oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. Journal of<br>Materials Chemistry, 2012, 22, 23477.                                 | 6.7  | 183       |
| 61 | Flammability of EVA/IFR (APP/PER/ZB system) and EVA/IFR/synergist (CaCO <sub>3</sub> , NG, and EG) composites. Journal of Applied Polymer Science, 2012, 126, 1917-1928.                                                                                                      | 2.6  | 30        |
| 62 | Morphology-controllable graphene–TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. Journal of Materials Chemistry, 2011, 21, 17729.                                                                                                 | 6.7  | 130       |
| 63 | Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 478-484.                                                                                 | 2.9  | 160       |
| 64 | Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. Journal of Materials Chemistry, 2011, 21, 5897. | 6.7  | 349       |
| 65 | Preparation of hyperbranched aromatic polyamide grafted nanoparticles for thermal properties reinforcement of epoxy composites. Polymer Chemistry, 2011, 2, 1380.                                                                                                             | 3.9  | 117       |
| 66 | Graphene nanocomposites based on poly(vinylidene fluoride): Structure and properties. Polymer Composites, 2011, 32, 1483-1491.                                                                                                                                                | 4.6  | 77        |
| 67 | Preparation of PbSe nanoparticles by electron beam irradiation method. Bulletin of Materials Science, 2008, 31, 825-829.                                                                                                                                                      | 1.7  | 9         |