Jin Woong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747570/publications.pdf

Version: 2024-02-01

331670 315739 1,819 88 21 38 h-index citations g-index papers 93 93 93 2866 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyphenol-modified nanovesicles for synergistically enhanced <i>in vitro</i> tumor cell targeting and apoptosis. Journal of Materials Chemistry B, 2022, 10, 1561-1570.	5.8	2
2	Antigen–Antibody Interactionâ€Derived Bioadhesion of Bacterial Cellulose Nanofibers to Promote Topical Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	17
3	Recyclable 2D Colloid Surfactants with High Catalytic Activities at Pickering Emulsion Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	17
4	Microfluidic macroemulsion stabilization through in situ interfacial coacervation of associative nanoplatelets and polyelectrolytes. Journal of Colloid and Interface Science, 2022, 614, 574-582.	9.4	6
5	Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. Journal of Physical Chemistry Letters, 2022, 13, 1480-1488.	4.6	5
6	Hydrophobically Modified Cellulose Nanofibersâ€Enveloped Solid Lipid Microparticles for Improved Antioxidant Cargo Retention. Macromolecular Rapid Communications, 2022, 43, e2100917.	3.9	4
7	Responsive Colloidal Polymer Particles with Ordered Mesostructures. Advanced Functional Materials, 2021, 31, 2008169.	14.9	45
8	Light-activated polydopamine coatings for efficient metal recovery from electronic waste. Separation and Purification Technology, 2021, 254, 117674.	7.9	10
9	Cell-penetrating peptide-conjugated lipid/polymer hybrid nanovesicles for endoplasmic reticulum-targeting intracellular delivery. Journal of Materials Chemistry B, 2021, 9, 464-470.	5.8	20
10	Energetically Preferred Bilayered Coacervation of Oppositely Charged ZrHP Nanoplatelets. ACS Applied Materials & Description (2021), 13, 7664-7671.	8.0	7
11	Structuring Pickering Emulsion Interfaces with Bilayered Coacervates of Cellulose Nanofibers and Hectorite Nanoplatelets. Langmuir, 2021, 37, 3828-3835.	3.5	13
12	ZnO nanoparticles-laden cellulose nanofibers-armored Pickering emulsions with improved UV protection and water resistance. Journal of Industrial and Engineering Chemistry, 2021, 96, 219-225.	5.8	19
13	Bacterial cellulose nanofibrils-armored Pickering emulsions with limited influx of metal ions. Carbohydrate Polymers, 2021, 258, 117730.	10.2	18
14	Fabrication of cell penetrating peptide-conjugated bacterial cellulose nanofibrils with remarkable skin adhesion and water retention performance. International Journal of Pharmaceutics, 2021, 600, 120476.	5.2	15
15	Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydrate Polymers, 2021, 272, 118459.	10.2	33
16	Skin protein-derived peptide-conjugated vesicular nanocargos for selected skin cell targeting and consequent activation. Journal of Materials Chemistry B, 2021, 9, 4956-4962.	5.8	5
17	Enhancing skin permeation of nanoemulsions through associative polymeric micelles-mediated drop-to-skin dipolar interactions. Journal of Molecular Liquids, 2021, 344, 117741.	4.9	3
18	Microfluidic production of monodisperse emulsions for cosmetics. Biomicrofluidics, 2021, 15, 051302.	2.4	13

#	Article	IF	CITATIONS
19	Cellulose nanofiber-multilayered fruit peel-mimetic gelatin hydrogel microcapsules for micropackaging of bioactive ingredients. Carbohydrate Polymers, 2020, 229, 115559.	10.2	14
20	Preparation of a biodegradable superabsorbent polymer and measurements of changes in absorption properties depending on the type of surfaceâ€crosslinker. Polymers for Advanced Technologies, 2020, 31, 273-283.	3.2	21
21	Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers. Journal of Colloid and Interface Science, 2020, 561, 318-326.	9.4	23
22	Boston Ivy Diskâ€Inspired Pressureâ€Mediated Adhesive Film Patches. Small, 2020, 16, e1904282.	10.0	14
23	Fabrication of attractive hectorite nanoplatelets by high-pressure homogenization for shear-responsive reversible rheology modification of organogels. Journal of Industrial and Engineering Chemistry, 2020, 90, 274-280.	5 . 8	4
24	Preparation and Performance of Superabsorbent Polymer with Cellulose Additives. Fibers and Polymers, 2020, 21, 2448-2455.	2.1	9
25	Janus amphiphilic nanoplatelets as smart colloid surfactants with complementary face-to-face interactions. Chemical Communications, 2020, 56, 6031-6034.	4.1	12
26	Unveiling Spinodal Decompositionâ€Driven Phase Separation of Cellulose Nanofibrilsâ€Reinforced Nanoemulsion Films for In Situ Thermoset Curing. Advanced Materials Interfaces, 2020, 7, 2000521.	3.7	3
27	Adhesive Patches: Boston Ivy Diskâ€Inspired Pressureâ€Mediated Adhesive Film Patches (Small 9/2020). Small, 2020, 16, 2070049.	10.0	2
28	2D Colloidal Array of Glucoseâ€Conjugative Conductive Microparticles for a Pressureâ€Mediated Chemiresistive Sensor Platform. Advanced Functional Materials, 2020, 30, 2000431.	14.9	9
29	Effective association of ceramide-coassembled lipid nanovehicles with stratum corneum for improved skin barrier function and enhanced skin penetration. International Journal of Pharmaceutics, 2020, 579, 119162.	5.2	11
30	Color-spectrum-broadened ductile cellulose films for vapor-pH-responsive colorimetric sensors. Journal of Industrial and Engineering Chemistry, 2019, 80, 590-596.	5.8	13
31	Photochemically Enhanced Selective Adsorption of Gold Ions on Tannin-Coated Porous Polymer Microspheres. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21915-21925.	8.0	29
32	Fabrication of cell membrane-adhesive soft polymeric nanovehicles for noninvasive visualization of epidermal-dermal junction-targeted drug delivery. International Journal of Pharmaceutics, 2019, 565, 233-241.	5. 2	8
33	Effective Suppression of Oxidative Stress on Living Cells in Hydrogel Particles Containing a Physically Immobilized WS ₂ Radical Scavenger. ACS Applied Materials & Therfaces, 2019, 11, 18817-18824.	8.0	8
34	Controlled rheological behaviors of hyaluronic acid solutions through attractive polymeric micelle-mediated interchain association. Journal of Industrial and Engineering Chemistry, 2019, 75, 61-68.	5.8	4
35	Highly Stretchable and Wearable Thermotherapy Pad with Micropatterned Thermochromic Display Based on Ag Nanowire–Singleâ€Walled Carbon Nanotube Composite. Advanced Functional Materials, 2019, 29, 1901061.	14.9	66
36	Colloidal Pixelâ€Based Micropatterning Using Uniform Janus Microparticles with Tunable Anisotropic Particle Geometry. Advanced Functional Materials, 2019, 29, 1805392.	14.9	18

#	Article	IF	Citations
37	Nanoemulsion Vehicles as Carriers for Follicular Delivery of Luteolin. ACS Biomaterials Science and Engineering, 2018, 4, 1723-1729.	5.2	22
38	Magnetic-Patchy Janus Colloid Surfactants for Reversible Recovery of Pickering Emulsions. ACS Applied Materials & Emulsions & E	8.0	36
39	Monodisperse Microshell Structured Gelatin Microparticles for Temporary Chemoembolization. Biomacromolecules, 2018, 19, 386-391.	5.4	19
40	Adjustable Intermolecular Interactions Allowing 2D Transition Metal Dichalcogenides with Prolonged Scavenging Activity for Reactive Oxygen Species. Small, 2018, 14, e1800026.	10.0	30
41	Tailored layer-by-layer deposition of silica reinforced polyelectrolyte layers on polymer microcapsules for enhanced antioxidant cargo retention. Journal of Industrial and Engineering Chemistry, 2018, 58, 80-86.	5.8	2
42	2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays. Journal of Industrial and Engineering Chemistry, 2018, 68, 393-398.	5.8	15
43	Radical Scavengin: Environmental Stimuliâ€Irresponsive Longâ€Term Radical Scavenging of 2D Transition Metal Dichalcogenides through Defectâ€Mediated Hydrogen Atom Transfer in Aqueous Media (Adv.) Tj ETQq1 1	0. 7&9 314	ł rgBT /Overl
44	Environmental Stimuliâ€Irresponsive Longâ€Term Radical Scavenging of 2D Transition Metal Dichalcogenides through Defectâ€Mediated Hydrogen Atom Transfer in Aqueous Media. Advanced Functional Materials, 2018, 28, 1802737.	14.9	9
45	Cut-and-Paste Transferrable Pressure Sensing Cartridge Films. Chemistry of Materials, 2018, 30, 6410-6419.	6.7	13
46	Cell-Penetrating Peptide-Patchy Deformable Polymeric Nanovehicles with Enhanced Cellular Uptake and Transdermal Delivery. Biomacromolecules, 2018, 19, 2682-2690.	5.4	39
47	Eâ€Skin: Eâ€Skin Tactile Sensor Matrix Pixelated by Positionâ€Registered Conductive Microparticles Creating Pressureâ€Sensitive Selectors (Adv. Funct. Mater. 31/2018). Advanced Functional Materials, 2018, 28, 1870214.	14.9	0
48	Janus colloid surfactant catalysts for <i>in situ</i> organic reactions in Pickering emulsion microreactors. Green Chemistry, 2018, 20, 2840-2844.	9.0	53
49	Highly stable, electrostatically attractive silicone nanoemulsions produced by interfacial assembly of amphiphilic triblock copolymers. Soft Matter, 2018, 14, 5581-5587.	2.7	3
50	Eâ€Skin Tactile Sensor Matrix Pixelated by Positionâ€Registered Conductive Microparticles Creating Pressureâ€Sensitive Selectors. Advanced Functional Materials, 2018, 28, 1801858.	14.9	86
51	Associative Polymerâ€grafted Magnetic Nanoparticles for Stabilization and Recovery of Pickering Emulsions. Bulletin of the Korean Chemical Society, 2018, 39, 806-811.	1.9	5
52	Structurally Stable Attractive Nanoscale Emulsions with Dipole–Dipole Interactionâ€Driven Interdrop Percolation. Chemistry - A European Journal, 2017, 23, 4292-4297.	3.3	16
53	Nanofluid Enhanced Oil Recovery Using Hydrophobically Associative Zwitterionic Polymer-Coated Silica Nanoparticles. Energy & Ener	5.1	90
54	Frontispiece: Structurally Stable Attractive Nanoscale Emulsions with Dipole–Dipole Interactionâ€Driven Interdrop Percolation. Chemistry - A European Journal, 2017, 23, .	3.3	0

#	Article	IF	Citations
55	Smart Cellulose Nanofluids Produced by Tunable Hydrophobic Association of Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31095-31101.	8.0	34
56	Polyglycerolated nanocarriers with increased ligand multivalency for enhanced in vivo therapeutic efficacy of paclitaxel. Biomaterials, 2017, 145, 223-232.	11.4	12
57	Bioinspired Synthesis of Mesoporous Gold-silica Hybrid Microspheres as Recyclable Colloidal SERS Substrates. Scientific Reports, 2017, 7, 14728.	3.3	30
58	AP736 induces miRâ€125b expression for the efficient whitening and antiâ€ageing action in human epidermal cells. Experimental Dermatology, 2017, 26, 451-454.	2.9	1
59	Particulate Coacervation of Associative Polymer Brushes-Grafted Nanoparticles To Produce Structurally Stable Pickering Emulsions. Langmuir, 2016, 32, 13403-13408.	3.5	8
60	Novel associative nanoparticles grafted with hydrophobically modified zwitterionic polymer brushes for the rheological control of aqueous polymer gel fluids. Polymer Chemistry, 2016, 7, 3471-3476.	3.9	14
61	Conductive magnetic-patchy colloidal microparticles for a high performance pressure sensor. Chemical Communications, 2016, 52, 12334-12337.	4.1	7
62	Temperatureâ€responsive Hydrogels Synthesized from Photoâ€Polymerizable Poloxamer Macromers for Topical Skin Moisturizing. Bulletin of the Korean Chemical Society, 2016, 37, 1331-1336.	1.9	4
63	Uniform and stable hydrogel-filled liposome-analogous vesicles with a thin elastomer shell layer. Colloids and Surfaces B: Biointerfaces, 2016, 146, 544-549.	5.0	6
64	The physical origins of transit time measurements for rapid, single cell mechanotyping. Lab on A Chip, 2016, 16, 3330-3339.	6.0	61
65	Synthesis of Monodisperse Biâ€Compartmentalized Amphiphilic Janus Microparticles for Tailored Assembly at the Oil–Water Interface. Angewandte Chemie, 2016, 128, 4585-4589.	2.0	10
66	Synthesis of Monodisperse Biâ€Compartmentalized Amphiphilic Janus Microparticles for Tailored Assembly at the Oil–Water Interface. Angewandte Chemie - International Edition, 2016, 55, 4509-4513.	13.8	47
67	Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by <i>in Situ</i> Formation of Stable Oil-in-Water Pickering Emulsions. Energy & E	5.1	79
68	Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 2016, 12, 157-164.	2.7	93
69	Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high temperatures. Physical Review E, 2015, 92, 030302.	2.1	11
70	Synthesis and Shape Control of Uniform Polymer Microparticles by Tailored Adsorption of Poly(ethylene oxide)â€∢i>bà€Poly(ε aprolactone) Copolymer. Bulletin of the Korean Chemical Society, 2015, 36, 1467-1473.	1.9	4
71	Photocrosslinkable Poly($\hat{l}\mu$ -caprolactone)- <i>b</i> -Hyperbranched Polyglycerol (PCL- <i>b</i> -hbPG) with Improved Biocompatibility and Stability for Drug Delivery. Macromolecular Chemistry and Physics, 2015, 216, 1161-1170.	2.2	16
72	Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil–water interface. RSC Advances, 2015, 5, 46276-46281.	3.6	7

#	Article	IF	Citations
73	Highly Stable Phase Change Material Emulsions Fabricated by Interfacial Assembly of Amphiphilic Block Copolymers during Phase Inversion. Langmuir, 2015, 31, 2649-2654.	3.5	18
74	Combination of nanoparticles with photothermal effects and phase-change material enhances the non-invasive transdermal delivery of drugs. Colloids and Surfaces B: Biointerfaces, 2015, 135, 324-331.	5.0	17
75	Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Nano Letters, 2015, 15, 4737-4744.	9.1	137
76	Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices. Colloids and Surfaces B: Biointerfaces, 2014, 123, 339-344.	5.0	12
77	Evaluation of transdermal delivery of nanoemulsions in <i>ex vivo</i> porcine skin using two-photon microscopy and confocal laser-scanning microscopy. Journal of Biomedical Optics, 2014, 19, 106006.	2.6	3
78	Stabilization of pickering emulsions by generating complex colloidal layers at liquid–liquid interfaces. Journal of Colloid and Interface Science, 2014, 413, 100-105.	9.4	41
79	Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells. Journal of Colloid and Interface Science, 2014, 426, 162-169.	9.4	17
80	Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid. Colloids and Surfaces B: Biointerfaces, 2014, 116, 597-602.	5.0	13
81	Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly(ethylene glycol)-b-poly(Îμ-caprolactone) star polymers. Colloid and Polymer Science, 2013, 291, 1817-1827.	2.1	21
82	Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013, 14, 509-514.	2.2	66
83	Asymmetric functionalization of colloidal dimer particles with gold nanoparticles. Chemical Communications, 2012, 48, 9056.	4.1	35
84	Effect of composition on water permeability of model stratum corneum lipidmembranes. Soft Matter, 2012, 8, 1539-1546.	2.7	11
85	Synthetic polymer membranes as a proxy of skins in permeation studies of biologically active compounds. Macromolecular Research, 2012, 20, 379-384.	2.4	1
86	Fabrication of monodisperse polymer/silica hybrid microparticles for improving light diffusion properties. Macromolecular Research, 2012, 20, 385-390.	2.4	9
87	Biosorption behaviors of natural polymer microfibers synthesized by using cellulase-based enzyme reactions. Macromolecular Research, 2012, 20, 490-495.	2.4	0
88	Enhanced transdermal delivery by using electrostatically interactive chitosan nanocapsules. Colloid and Polymer Science, 2012, 290, 553-559.	2.1	5