
Michael Hügler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3745776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Draft Genome Sequences of <i>Buttiauxella</i> spp. Isolates from Water and Gastropods with Putative β- <scp>d</scp> -Glucuronidase Activity. Microbiology Resource Announcements, 2022, 11, e0006422.	0.6	2
2	Genome Analysis of <i>Enterobacter asburiae</i> and <i>Lelliottia</i> spp. Proliferating in Oligotrophic Drinking Water Reservoirs and Lakes. Applied and Environmental Microbiology, 2022, 88,	3.1	8
3	Draft Genome Sequences of Enterobacter spp., <i>Lelliottia</i> spp., and <i>Serratia</i> spp., Coliform Bacteria from Drinking Water Reservoirs and Lakes. Microbiology Resource Announcements, 2021, 10, e0062221.	0.6	4
4	Seasonal dynamics in the number and composition of coliform bacteria in drinking water reservoirs. Science of the Total Environment, 2021, 787, 147539.	8.0	20
5	Water safety plan enhancements with improved drinking water quality detection techniques. Science of the Total Environment, 2020, 698, 134185.	8.0	43
6	From an extremophilic community to an electroautotrophic production strain: identifying a novel <i>Knallgas</i> bacterium as cathodic biofilm biocatalyst. ISME Journal, 2020, 14, 1125-1140.	9.8	28
7	Evaluation and application of molecular denitrification monitoring methods in the northern Lake Tai, China. Science of the Total Environment, 2019, 663, 686-695.	8.0	8
8	Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science, 2018, 359, 563-567.	12.6	136
9	Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. ELife, 2017, 6, .	6.0	40
10	The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Frontiers in Microbiology, 2017, 8, 943.	3.5	100
11	Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO ₂ fixation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8239-8244.	7.1	396
12	Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride $\hat{a} \in$ " A mechanistic study. Water Research, 2014, 51, 144-151.	11.3	29
13	Complete genome sequence of Thermovibrio ammonificans HB-1T, a thermophilic, chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent. Standards in Genomic Sciences, 2012, 7, 82-90.	1.5	11
14	Widespread Occurrence of Two Carbon Fixation Pathways in Tubeworm Endosymbionts: Lessons from Hydrothermal Vent Associated Tubeworms from the Mediterranean Sea. Frontiers in Microbiology, 2012, 3, 423.	3.5	38
15	Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiology Ecology, 2012, 81, 172-187.	2.7	31
16	Detection and Quantification of E. coli and Coliform Bacteria in Water Samples with a New Method Based on Fluorescence In Situ Hybridisation. Special Publication - Royal Society of Chemistry, 2012, , 123-130.	0.0	0
17	Development and validation of a FISH-based method for the detection and quantification of E. coli and coliform bacteria in water samples. Water Science and Technology, 2011, 64, 1435-1442.	2.5	4
18	Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean. Annual Review of Marine Science, 2011, 3, 261-289.	11.6	566

Michael Hügler

#	Article	IF	CITATIONS
19	Pathways of Carbon and Energy Metabolism of the Epibiotic Community Associated with the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata. PLoS ONE, 2011, 6, e16018.	2.5	80
20	Labeling and Enzyme Studies of the Central Carbon Metabolism in <i>Metallosphaera sedula</i> . Journal of Bacteriology, 2011, 193, 1191-1200.	2.2	62
21	<i>Nitrosopumilus maritimus</i> genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8818-8823.	7.1	853
22	Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	80
23	Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 2010, 8, 447-460.	28.6	590
24	Life at Deep Sea Hydrothermal Vents—Oases Under Water. International Journal of Marine and Coastal Law, 2009, 24, 201-208.	0.7	3
25	Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy. Eos, 2009, 90, 110-111.	0.1	14
26	Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Extremophiles, 2008, 12, 627-640.	2.3	44
27	Genome of the Epsilonproteobacterial Chemolithoautotroph <i>Sulfurimonas denitrificans</i> . Applied and Environmental Microbiology, 2008, 74, 1145-1156.	3.1	228
28	Sulfur Oxidation at Deep-Sea Hydrothermal Vents. , 2008, , 238-258.		62
29	Physiological Proteomics of the Uncultured Endosymbiont of Riftia pachyptila. Science, 2007, 315, 247-250.	12.6	207
30	Insights into the Autotrophic CO2 Fixation Pathway of the Archaeon Ignicoccus hospitalis: Comprehensive Analysis of the Central Carbon Metabolism. Journal of Bacteriology, 2007, 189, 4108-4119.	2.2	79
31	Autotrophic CO2fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environmental Microbiology, 2007, 9, 81-92.	3.8	139
32	The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biology, 2006, 4, e383.	5.6	144
33	Malonyl-Coenzyme A Reductase in the Modified 3-Hydroxypropionate Cycle for Autotrophic Carbon Fixation in Archaeal Metallosphaera and Sulfolobus spp. Journal of Bacteriology, 2006, 188, 8551-8559.	2.2	91
34	Evidence for Autotrophic CO ₂ Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria. Journal of Bacteriology, 2005, 187, 3020-3027.	2.2	245
35	Assaying for the 3â€Hydroxypropionate Cycle of Carbon Fixation. Methods in Enzymology, 2005, 397, 212-221.	1.0	11
36	Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Archives of Microbiology, 2003, 179, 160-173.	2.2	161

3

#	Article	IF	CITATIONS
37	Characterization of acetyl-CoA/propionyl-CoA carboxylase inMetallosphaera sedula. FEBS Journal, 2003, 270, 736-744.	0.2	106
38	Malonyl-Coenzyme A Reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation. Journal of Bacteriology, 2002, 184, 2404-2410.	2.2	145