Christian Wolter

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3745412/publications.pdf
Version: 2024-02-01

Evident but contextâ€dependent mortality of fish passing hydroelectric turbines. Conservation Biology,
2022,36 . 2022, 36, .

6 The European Fish Hazard Index â€" An assessment tool for screening hazard of hydropower plants for fish. Sustainable Energy Technologies and Assessments, 2021, 43, 100903.
$2.7 \quad 9$

> Sustainability assessment of hydropower water wheels with downstream migrating fish and blade
> strike modelling. Sustainable Energy Technologies and Assessments, 2021, 43, 100943 .
$2.7 \quad 7$

Status of aquatic and riparian biodiversity in artificial lake ecosystems with and without management
8 for recreational fisheries: Implications for conservation. Aquatic Conservation: Marine and
2.0 Freshwater Ecosystems, 2021, 31, 153-172.

9 Environmental determinants of fish abundance in the littoral zone of gravel pit lakes. Hydrobiologia,
2021, 848, 2449-2471.
2.0

Characterization of European lampreys and fishes by their longitudinal and lateral distribution
6.3

6

A day on the shore: Ecological impacts of non-motorised recreational activities in and around inland water bodies. Journal for Nature Conservation, 2021, 64, 126073.

Reply to Stroud: Invasive amphibians and reptiles from islands indeed show higher niche expansion
14 than mainland species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .

15 River Resilienceâž. , 2021, , .
0

Fish species sensitivity classification for environmental impact assessment, conservation and restoration planning. Science of the Total Environment, 2020, 708, 135173.

[^0]Do We Know Enough to Save European Riverine Fish?â€"A Systematic Review on Autecological
Requirements During Critical Life Stages of 10 Rheophilic Species at Risk. Sustainability, 2019, 11, 5011.
$3.2 \quad 14$

The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and
Applications, 2019, 35, 107-120.
29 The underestimated dynamics and impacts of water-base
56
Disentangling multiple pressures on fish assemblages in large rivers. Science of the Total 8.0 21
$30 \quad$ Disentangling multiple pressures on fis7.8
$31 \begin{aligned} & \text { Improved river continuity facilitates fishes' abilities to } \\ & \text { of Environmental Management, 2018, 208, 169-179. }\end{aligned}$
The gain of additional sampling methods for the fish-based assessment of large rivers. Fisheries Research, 2018, 197, 15-24. 1.7 30
3233 Salmonid stocking in five North Atlantic jurisdictions: Identifying drivers and barriers to policy2.023Relatively large males lower reproductive success in female zebrafish. Environmental Biology ofFishes, 2018, 101, 1625-1638.
1.0 5The future distribution of river fish: The complex interplay of climate and land use changes, species
dispersal and movement barriers. Global Change Biology, 2017, 23, 4970-4986.9.579

Habitat rehabilitation in urban waterways: the ecological potential of bank protection structures for
benthic invertebrates. Urban Ecosystems, 2017, 20, 759-773.

Diverse Approaches to Implement and Monitor River Restoration: A Comparative Perspective in France and Germany. Environmental Management, 2017, 60, 931-946.
2.7

Assessing how uncertainty and stochasticity affect the dispersal of fish in river networks. Ecological Modelling, 2017, 359, 220-228.

Habitat rehabilitation for juvenile fish in urban waterways: A case study from Berlin, Germany. Journal of Applied Ichthyology, 2017, 33, 136-143.

Effects of macrophyte development on the oxygen metabolism of an urban river rehabilitation structure. Science of the Total Environment, 2017, 574, 1125-1130.
$8.0 \quad 13$

Understanding and Managing Freshwater Recreational Fisheries as Complex Adaptive
Social-Ecological Systems. Reviews in Fisheries Science and Aquaculture, 2017, 25, 1-41.
9.1

143

43 Differences among Expert Judgments of Fish Habitat Suitability and Implications for River Management.
River Research and Applications, 2017, 33, 538-547.

Effective River Restoration in the 21st Century. Advances in Ecological Research, 2016, 55, 535-611.
2.7

58

Temporal and Spatial Patterns of Fish Response to Hydromorphological Processes. River Research and
Applications, 2016, 32, 190-201.

Fuzzy cognitive mapping for predicting hydromorphological responses to multiple pressures in rivers.
46 Journal of Applied Ecology, 2016, 53, 559-566.
4.0

14
$47 \quad \begin{aligned} & \text { Synergistic and antagonistic interactions of future land use and climate change on river fish } \\ & \text { assemblages. Global Change Biology, 2016, 22, 1505-1522. }\end{aligned}$

Modelling the Influence of Aquatic Vegetation on the Hydrodynamics of an Alternative Bank
Protection Measure in a Navigable Waterway. River Research and Applications, 2016, 32, 2071-2080.
Modelling the Influence of Aquatic Vegetation on the Hydrodynamics of an Alternative Bank
Protection Measure in a Navigable Waterway. River Research and Applications, 2016, 32, 2071-2080.
1.7

16

Coupling systematic planning and expert judgement enhances the efficiency of river restoration.
Science of the Total Environment, 2016, 560-561, 266-273.

Response of fish assemblages to hydromorphological restoration in central and northern European rivers. Hydrobiologia, 2016, 769, 67-78.

The evolutionary legacy of sizeâ€selective harvesting extends from genes to populations. Evolutionary
51 Applications, 2015, 8, 597-620.
3.1

142

Performance of bottom ramps to mitigate gravel habitat bottlenecks in a channelized lowland river.
Restoration Ecology, 2015, 23, 595-606.

Contrasting the roles of section length and instream habitat enhancement for river restoration
53 success: a field study of 20 European restoration projects. Journal of Applied Ecology, 2015, 52,
4.0

1518-1527.

A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and
Biota. PLoS ONE, 2015, 10, e0130228.

Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology,
56 hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment, 2015, 533,
57 Thermal and maternal environments shape the value of early hatching in a natural population of a

strongly cannibalistic freshwater fish. Oecologia, 2015, 178, 951-965.

```
63 FIDIMO â€" A free and open source CIS based dispersal model for riverine fish. Ecological Informatics,
2014, 24, 238-247.

Variability and alterations of water temperatures across the Elbe and Danube River Basins. Climatic
Change, 2013, 119, 375-389.

Pressures at larger spatial scales strongly influence the ecological status of heavily modified river
66 water bodies in Cermany. Science of the Total Environment, 2013, 454-455, 40-50.
8.0

26

The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. Journal of Fish Biology, 2013, 82, 17-33.

Improvement of aquatic vegetation in urban waterways using protected artificial shallows.
68 Ecological Engineering, 2012, 42, 160-167.
3.6

22

Linking fish assemblages and spatiotemporal thermal heterogeneity in a river-floodplain landscape
69 using high-resolution airborne thermal infrared remote sensing and in-situ measurements. Remote
\(11.0 \quad 25\)
Sensing of Environment, 2012, 125, 134-146.
Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sensing of
11.0

Applied Ichthyology, 2012, 28, 735-739.

78 The contribution of long-term isolated water bodies to floodplain fish diversity. Freshwater Biology, 2011, 56, 1469-1480
Artificial light at night: implications for early life stages development in four temperate freshwater
Implications of channel processes for juvenile fish habitats in Alpine rivers. Aquatic Sciences, 2009, 71,
\(338-349\). \begin{tabular}{l} 
Performance level and efficiency of two differing predator-avoidance strategies depend on \\
nutritional state of the prey fish. Behavioral Ecology and Sociobiology, 2009, 63, 1735-1742. \\
\(93 \quad\) Rivers of the Central European Highlands and Plains. , 2009, , 525-576.
\end{tabular}

Contrasting pike (Esox lucius L.) movement and habitat choice between summer and winter in a small
lake. Hydrobiologia, 2008, 601, 17-27. lake. Hydrobiologia, 2008, 601, 17-27.
\(2.0 \quad 60\)
Environmental flow methodologies to protect fisheries resources in humanấmodified large lowland
rivers. River Research and Applications, 2008, 24, 519-527.

96 Random displacement versus habitat choice of fish larvae in rivers. River Research and Applications,
\(1.7 \quad 36\)
2008, 24, 661-672.

The Past, Present and Future Role of Limnology in Freshwater Fisheries Science. International Review of Hydrobiology, 2008, 93, 541-549.
\(0.9 \quad 23\)

\author{
\%
}

98 Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture,
2008, 277, 179-184.
\(3.5 \quad 54\)
A behavioral perspective on fishing-induced evolution. Trends in Ecology and Evolution, 2008, 23,
\(419-421\).
Challenges in developing fishâ€based ecological assessment methods for large floodplain rivers.
100
Fisheries Management and Ecology, 2007, 14, 483-494.
101 Temperature influence on the fish assemblage structure in a large lowland river, the lower Oder
101 River, Germany. Ecology of Freshwater Fish, 2007, 16, 493-503.
44
102 A fish-based typology of small temperate rivers in the northeastern lowlands of Germany.Limnologica, 2006, 36, 2-16.
\(1.5 \quad 20\)
103 Habitat Use of Juvenile Fish in the Lower Danube and the Danube Delta: Implications for Ecotone2.027Connectivity. Hydrobiologia, 2006, 571, 51-61.Using commercial catch statistics to detect habitat bottlenecks in large lowland rivers. RiverResearch and Applications, 2005, 21, 245-255.1.772.074
How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes
105 of the European temperate zone. Fisheries Management and Ecology, 2004, 11, 261-275.

Diel distribution patterns of fishes in a temperate large lowland river. Journal of Fish Biology, 2004, 64, 632-642.
107 A Model of Navigation-Induced Currents in Inland Waterways and Implications for Juvenile Fish
Displacement. Environmental Management, 2004, 34, 656-668.2.737
109 Amplitude of ecological potential: chub Leuciscus cephalus (L.) spawning in an artificial lowland

Sub-population structure of common fish species in the Elbe River estimated from DNA analysis.
110 Journal of Applied Ichthyology, 2003, 19, 278-283.
0.7

29

111 Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal
\(1.6 \quad 56\)
of Fish Biology, 2002, 61, 1386-1402.

Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal
112 of Fish Biology, 2002, 61, 1386-1402.
1.6

3

Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning, 2001, 53, 135-144.
7.5

Groyne-heads as potential summer habitats for juvenile rheophilic fishes in the Lower Oder, Germany.
Limnologica, 2001, 31, 17-26.
1.5

17

115 Rapid changes of fish assemblages in artificial lowland waterways. Limnologica, 2001, 31, 27-35.
1.5

6

116 The flood of the century on the River Oder: effects on the 0+ fish community and implications for
floodplain restoration. River Research and Applications, 2001, 17, 171-190.
0.8

56
117 Seasonal changes of fish diversity in the main channel of the large lowland River Oder. River Research and Applications, 2001, 17, 595-608.

Perch (Perca fluviatilis) as an indicator species for structural degradation in regulated rivers and```


[^0]:    $\begin{array}{ll} & \text { On the conser } \\ 251,108764 .\end{array}$

