Christian Wolter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3745412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evident but contextâ€dependent mortality of fish passing hydroelectric turbines. Conservation Biology, 2022, 36, .	4.7	7
2	A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.	6.4	95
3	Comparative assessment of hydropower risks for fishes using the novel European fish hazard Index. Sustainable Energy Technologies and Assessments, 2022, 51, 101906.	2.7	0
4	Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 2022, 103, e3719.	3.2	23
5	Impacts and Risks of Hydropower. , 2022, , 41-60.		3
6	The European Fish Hazard Index – An assessment tool for screening hazard of hydropower plants for fish. Sustainable Energy Technologies and Assessments, 2021, 43, 100903.	2.7	9
7	Sustainability assessment of hydropower water wheels with downstream migrating fish and blade strike modelling. Sustainable Energy Technologies and Assessments, 2021, 43, 100943.	2.7	7
8	Status of aquatic and riparian biodiversity in artificial lake ecosystems with and without management for recreational fisheries: Implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 153-172.	2.0	11
9	Environmental determinants of fish abundance in the littoral zone of gravel pit lakes. Hydrobiologia, 2021, 848, 2449-2471.	2.0	7
10	Characterization of European lampreys and fishes by their longitudinal and lateral distribution traits. Ecological Indicators, 2021, 123, 107350.	6.3	6
11	How much habitat does a river need? A spatially-explicit population dynamics model to assess ratios of ontogenetical habitat needs. Journal of Environmental Management, 2021, 286, 112100.	7.8	6
12	Ecological impacts of water-based recreational activities on freshwater ecosystems: a global meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211623.	2.6	16
13	A day on the shore: Ecological impacts of non-motorised recreational activities in and around inland water bodies. Journal for Nature Conservation, 2021, 64, 126073.	1.8	9
14	Reply to Stroud: Invasive amphibians and reptiles from islands indeed show higher niche expansion than mainland species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
15	River ResilienceâŽ. , 2021, , .		0
16	Fish species sensitivity classification for environmental impact assessment, conservation and restoration planning. Science of the Total Environment, 2020, 708, 135173.	8.0	36
17	On the conservation value of historic canals for aquatic ecosystems. Biological Conservation, 2020, 251, 108764.	4.1	17
18	Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23643-23651.	7.1	173

#	Article	IF	CITATIONS
19	Species distribution models have limited spatial transferability for invasive species. Ecology Letters, 2020, 23, 1682-1692.	6.4	78
20	Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biology, 2020, 18, e3000935.	5.6	41
21	The effects of recreational and commercial navigation on fish assemblages in large rivers. Science of the Total Environment, 2019, 646, 1304-1314.	8.0	21
22	The role of floods and droughts on riverine ecosystems under a changing climate. Fisheries Management and Ecology, 2019, 26, 461-473.	2.0	17
23	Do We Know Enough to Save European Riverine Fish?—A Systematic Review on Autecological Requirements During Critical Life Stages of 10 Rheophilic Species at Risk. Sustainability, 2019, 11, 5011.	3.2	14
24	The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and Applications, 2019, 35, 107-120.	1.7	86
25	Fish passes design discharge requirements for successful operation. River Research and Applications, 2019, 35, 1697-1701.	1.7	9
26	Effect of recreationalâ€fisheries management on fish biodiversity in gravel pit lakes, with contrasts to unmanaged lakes. Journal of Fish Biology, 2019, 94, 865-881.	1.6	24
27	Quantitative response of riverine benthic invertebrates to sediment grain size and shear stress. Hydrobiologia, 2019, 834, 47-61.	2.0	6
28	A systematic review of assessment and conservation management in large floodplain rivers – Actions postponed. Ecological Indicators, 2019, 98, 453-461.	6.3	44
29	The underestimated dynamics and impacts of water-based recreational activities on freshwater ecosystems. Environmental Reviews, 2018, 26, 199-213.	4.5	56
30	Disentangling multiple pressures on fish assemblages in large rivers. Science of the Total Environment, 2018, 627, 1093-1105.	8.0	21
31	Improved river continuity facilitates fishes' abilities to track future environmental changes. Journal of Environmental Management, 2018, 208, 169-179.	7.8	29
32	The gain of additional sampling methods for the fish-based assessment of large rivers. Fisheries Research, 2018, 197, 15-24.	1.7	30
33	Salmonid stocking in five North Atlantic jurisdictions: Identifying drivers and barriers to policy change. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1451-1464.	2.0	23
34	Relatively large males lower reproductive success in female zebrafish. Environmental Biology of Fishes, 2018, 101, 1625-1638.	1.0	5
35	The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Global Change Biology, 2017, 23, 4970-4986.	9.5	79
36	Components and drivers of change in European freshwater fish faunas. Journal of Biogeography, 2017, 44, 1781-1790.	3.0	29

#	Article	IF	CITATIONS
37	Habitat rehabilitation in urban waterways: the ecological potential of bank protection structures for benthic invertebrates. Urban Ecosystems, 2017, 20, 759-773.	2.4	12
38	Diverse Approaches to Implement and Monitor River Restoration: A Comparative Perspective in France and Germany. Environmental Management, 2017, 60, 931-946.	2.7	35
39	Assessing how uncertainty and stochasticity affect the dispersal of fish in river networks. Ecological Modelling, 2017, 359, 220-228.	2.5	5
40	Habitat rehabilitation for juvenile fish in urban waterways: A case study from Berlin, Germany. Journal of Applied Ichthyology, 2017, 33, 136-143.	0.7	5
41	Effects of macrophyte development on the oxygen metabolism of an urban river rehabilitation structure. Science of the Total Environment, 2017, 574, 1125-1130.	8.0	13
42	Understanding and Managing Freshwater Recreational Fisheries as Complex Adaptive Social-Ecological Systems. Reviews in Fisheries Science and Aquaculture, 2017, 25, 1-41.	9.1	143
43	Differences among Expert Judgments of Fish Habitat Suitability and Implications for River Management. River Research and Applications, 2017, 33, 538-547.	1.7	15
44	Effective River Restoration in the 21st Century. Advances in Ecological Research, 2016, 55, 535-611.	2.7	58
45	Temporal and Spatial Patterns of Fish Response to Hydromorphological Processes. River Research and Applications, 2016, 32, 190-201.	1.7	56
46	Fuzzy cognitive mapping for predicting hydromorphological responses to multiple pressures in rivers. Journal of Applied Ecology, 2016, 53, 559-566.	4.0	14
47	Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages. Global Change Biology, 2016, 22, 1505-1522.	9.5	66
48	Modelling the Influence of Aquatic Vegetation on the Hydrodynamics of an Alternative Bank Protection Measure in a Navigable Waterway. River Research and Applications, 2016, 32, 2071-2080.	1.7	16
49	Coupling systematic planning and expert judgement enhances the efficiency of river restoration. Science of the Total Environment, 2016, 560-561, 266-273.	8.0	20
50	Response of fish assemblages to hydromorphological restoration in central and northern European rivers. Hydrobiologia, 2016, 769, 67-78.	2.0	44
51	The evolutionary legacy of sizeâ€selective harvesting extends from genes to populations. Evolutionary Applications, 2015, 8, 597-620.	3.1	142
52	Performance of bottom ramps to mitigate gravel habitat bottlenecks in a channelized lowland river. Restoration Ecology, 2015, 23, 595-606.	2.9	9
53	Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. Journal of Applied Ecology, 2015, 52, 1518-1527.	4.0	64
54	A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota. PLoS ONE, 2015, 10, e0130228.	2.5	19

#	Article	IF	CITATIONS
55	Historic catches, abundance, and decline of Atlantic salmon Salmo salar in the River Elbe. Aquatic Sciences, 2015, 77, 367-380.	1.5	21
56	Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment, 2015, 533, 542-556.	8.0	77
57	Thermal and maternal environments shape the value of early hatching in a natural population of a strongly cannibalistic freshwater fish. Oecologia, 2015, 178, 951-965.	2.0	12
58	Model-based design for restoration of a small urban river. Journal of Hydro-Environment Research, 2015, 9, 226-236.	2.2	24
59	Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes. Ecological Applications, 2015, 25, 914-927.	3.8	49
60	Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River. PLoS ONE, 2015, 10, e0142813.	2.5	21
61	Estimating the potential for habitat restoration and connectivity effects on European sturgeon (<i>Acipenser sturio</i> L. 1758) population rehabilitation in a lowland river - the Havel, Germany. Journal of Applied Ichthyology, 2014, 30, 1473-1482.	0.7	8
62	Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 2014, 15, 456-473.	5.3	235
63	FIDIMO — A free and open source GIS based dispersal model for riverine fish. Ecological Informatics, 2014, 24, 238-247.	5.2	21
64	First record of the round goby Neogobius melanostomus (Pallas, 1814) in the lower River Oder, Germany. Biolnvasions Records, 2014, 3, 185-188.	1.1	7
65	Variability and alterations of water temperatures across the Elbe and Danube River Basins. Climatic Change, 2013, 119, 375-389.	3.6	29
66	Pressures at larger spatial scales strongly influence the ecological status of heavily modified river water bodies in Germany. Science of the Total Environment, 2013, 454-455, 40-50.	8.0	26
67	The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. Journal of Fish Biology, 2013, 82, 17-33.	1.6	34
68	Improvement of aquatic vegetation in urban waterways using protected artificial shallows. Ecological Engineering, 2012, 42, 160-167.	3.6	22
69	Linking fish assemblages and spatiotemporal thermal heterogeneity in a river-floodplain landscape using high-resolution airborne thermal infrared remote sensing and in-situ measurements. Remote Sensing of Environment, 2012, 125, 134-146.	11.0	25
70	Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sensing of Environment, 2012, 126, 39-50.	11.0	168
71	Limited contribution of predation by zooplanktivorous cyprinids to 0+ fish mortality. Journal of Applied Ichthyology, 2012, 28, 735-739.	0.7	0
72	Paternal body size affects reproductive success in laboratory-held zebrafish (Danio rerio). Environmental Biology of Fishes, 2012, 93, 461-474.	1.0	25

#	Article	IF	CITATIONS
73	Regulatory Aspects of Choice and Operation of Large-Scale Cooling Systems in Europe. , 2012, , 421-454.		2
74	Where Are All the Fish: Potential of Biogeographical Maps to Project Current and Future Distribution Patterns of Freshwater Species. PLoS ONE, 2012, 7, e40530.	2.5	42
75	Differential Allocation by Female Zebrafish (Danio rerio) to Different-Sized Males – An Example in a Fish Species Lacking Parental Care. PLoS ONE, 2012, 7, e48317.	2.5	20
76	Domesticated ecosystems and novel communities: challenges for the management of large rivers. Ecohydrology and Hydrobiology, 2011, 11, 167-174.	2.3	45
77	In situ estimation of gastric evacuation and consumption rates of burbot (Lota lota) in a summer-warm lowland river. Journal of Applied Ichthyology, 2011, 27, 1236-1241.	0.7	3
78	The contribution of long-term isolated water bodies to floodplain fish diversity. Freshwater Biology, 2011, 56, 1469-1480.	2.4	25
79	Artificial light at night: implications for early life stages development in four temperate freshwater fish species. Aquatic Sciences, 2011, 73, 143-152.	1.5	42
80	Site length for biological assessment of boatable rivers. River Research and Applications, 2011, 27, 520-535.	1.7	43
81	Analysis and evaluation of largeâ€scale river restoration planning in Germany to better link river research and Applications, 2011, 27, 985-999.	1.7	30
82	Impoverishment of YOYâ€fish assemblages by intense commercial navigation in a large Lowland river. River Research and Applications, 2011, 27, 1253-1263.	1.7	11
83	Experimental assessment of the probabilistic maturation reaction norm: condition matters. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 709-717.	2.6	47
84	The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere, 2011, 2, art122.	2.2	133
85	Functional vs scenic restoration – challenges to improve fish and fisheries in urban waters. Fisheries Management and Ecology, 2010, 17, 176-185.	2.0	19
86	Sizeâ€dependent reproductive success of wild zebrafish <i>Danio rerio</i> in the laboratory. Journal of Fish Biology, 2010, 77, 552-569.	1.6	40
87	Pan ontinental invasion of <i>Pseudorasbora parva</i> : towards a better understanding of freshwater fish invasions. Fish and Fisheries, 2010, 11, 315-340.	5.3	191
88	The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecology and Society, 2010, 15, .	2.3	375
89	When no catches matter: Coping with zeros in environmental assessments. Ecological Indicators, 2010, 10, 572-583.	6.3	28
90	Light pollution as a biodiversity threat. Trends in Ecology and Evolution, 2010, 25, 681-682.	8.7	592

#	Article	IF	CITATIONS
91	Implications of channel processes for juvenile fish habitats in Alpine rivers. Aquatic Sciences, 2009, 71, 338-349.	1.5	23
92	Performance level and efficiency of two differing predator-avoidance strategies depend on nutritional state of the prey fish. Behavioral Ecology and Sociobiology, 2009, 63, 1735-1742.	1.4	11
93	Rivers of the Central European Highlands and Plains. , 2009, , 525-576.		16
94	Contrasting pike (Esox lucius L.) movement and habitat choice between summer and winter in a small lake. Hydrobiologia, 2008, 601, 17-27.	2.0	60
95	Environmental flow methodologies to protect fisheries resources in humanâ€modified large lowland rivers. River Research and Applications, 2008, 24, 519-527.	1.7	24
96	Random displacement versus habitat choice of fish larvae in rivers. River Research and Applications, 2008, 24, 661-672.	1.7	36
97	The Past, Present and Future Role of Limnology in Freshwater Fisheries Science. International Review of Hydrobiology, 2008, 93, 541-549.	0.9	23
98	Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture, 2008, 277, 179-184.	3.5	54
99	A behavioral perspective on fishing-induced evolution. Trends in Ecology and Evolution, 2008, 23, 419-421.	8.7	167
100	Challenges in developing fishâ€based ecological assessment methods for large floodplain rivers. Fisheries Management and Ecology, 2007, 14, 483-494.	2.0	43
101	Temperature influence on the fish assemblage structure in a large lowland river, the lower Oder River, Germany. Ecology of Freshwater Fish, 2007, 16, 493-503.	1.4	44
102	A fish-based typology of small temperate rivers in the northeastern lowlands of Germany. Limnologica, 2006, 36, 2-16.	1.5	20
103	Habitat Use of Juvenile Fish in the Lower Danube and the Danube Delta: Implications for Ecotone Connectivity. Hydrobiologia, 2006, 571, 51-61.	2.0	27
104	Using commercial catch statistics to detect habitat bottlenecks in large lowland rivers. River Research and Applications, 2005, 21, 245-255.	1.7	7
105	How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fisheries Management and Ecology, 2004, 11, 261-275.	2.0	74
106	Diel distribution patterns of fishes in a temperate large lowland river. Journal of Fish Biology, 2004, 64, 632-642.	1.6	55
107	A Model of Navigation-Induced Currents in Inland Waterways and Implications for Juvenile Fish Displacement. Environmental Management, 2004, 34, 656-668.	2.7	37
108	Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries, 2003, 13, 63-89.	4.9	197

#	Article	IF	CITATIONS
109	Amplitude of ecological potential: chub Leuciscus cephalus (L.) spawning in an artificial lowland canal. Journal of Applied Ichthyology, 2003, 19, 52-54.	0.7	29
110	Sub-population structure of common fish species in the Elbe River estimated from DNA analysis. Journal of Applied Ichthyology, 2003, 19, 278-283.	0.7	2
111	Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal of Fish Biology, 2002, 61, 1386-1402.	1.6	56
112	Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal of Fish Biology, 2002, 61, 1386-1402.	1.6	3
113	Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning, 2001, 53, 135-144.	7.5	53
114	Groyne-heads as potential summer habitats for juvenile rheophilic fishes in the Lower Oder, Germany. Limnologica, 2001, 31, 17-26.	1.5	17
115	Rapid changes of fish assemblages in artificial lowland waterways. Limnologica, 2001, 31, 27-35.	1.5	6
116	The flood of the century on the River Oder: effects on the 0+ fish community and implications for floodplain restoration. River Research and Applications, 2001, 17, 171-190.	0.8	56
117	Seasonal changes of fish diversity in the main channel of the large lowland River Oder. River Research and Applications, 2001, 17, 595-608.	0.8	43
118	Seasonal changes of fish diversity in the main channel of the large lowland River Oder. River Research and Applications, 2001, 17, 595-608.	0.8	2
119	Long-term effects of human influence on fish community structure and fisheries in Berlin waters: an urban water system. Fisheries Management and Ecology, 2000, 7, 97-104.	2.0	32
120	Extensions to the known range of the whitefin gudgeon to Europe and biogeographical implications. Journal of Fish Biology, 2000, 57, 1339-1342.	1.6	6
121	Suitability of pharyngeal bone measures commonly used for reconstruction of prey fish length. Journal of Fish Biology, 2000, 57, 961-967.	1.6	24
122	Title is missing!. , 1999, 394, 163-177.		5
123	Perch (Perca fluviatilis) as an indicator species for structural degradation in regulated rivers and canals in the lowlands of Germany. Ecology of Freshwater Fish, 1997, 6, 174-181.	1.4	41
124	Characterization of the typical fish community of inland waterways of the north-eastern lowlands in Germany. River Research and Applications, 1997, 13, 335-343.	0.8	14
125	Distribution history of non-native freshwater fish species in Germany: how invasive are they?. Journal of Applied Ichthyology, 0, 26, 19-27.	0.7	41