
## Ryouichi Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744945/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature, 2000, 407, 153-159.                                                                                                                                             | 27.8 | 629       |
| 2  | Topological restriction of SNARE-dependent membrane fusion. Nature, 2000, 407, 194-198.                                                                                                                                                                  | 27.8 | 242       |
| 3  | Functional architecture of an intracellular membrane t-SNARE. Nature, 2000, 407, 198-202.                                                                                                                                                                | 27.8 | 222       |
| 4  | Yas3p, an Opi1 Family Transcription Factor, Regulates Cytochrome P450 Expression in Response to n-Alkanes in Yarrowia lipolytica. Journal of Biological Chemistry, 2009, 284, 7126-7137.                                                                 | 3.4  | 56        |
| 5  | Basic Helix-Loop-Helix Transcription Factor Heterocomplex of Yas1p and Yas2p Regulates Cytochrome<br>P450 Expression in Response to Alkanes in the Yeast Yarrowia lipolytica. Eukaryotic Cell, 2007, 6,<br>734-743.                                      | 3.4  | 52        |
| 6  | Metabolism of Hydrophobic Carbon Sources and Regulation of It in <i>n</i> -Alkane-Assimilating<br>Yeast <i>Yarrowia lipolytica</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 1149-1154.                                                    | 1.3  | 50        |
| 7  | Accumulation of Misfolded Protein Aggregates Leads to the Formation of Russell Body-like Dilated<br>Endoplasmic Reticulum in Yeast. , 1997, 13, 1009-1020.                                                                                               |      | 45        |
| 8  | Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genetics and Biology, 2016, 91, 43-54.                                                      | 2.1  | 44        |
| 9  | Transcriptional repression by glycerol of genes involved in the assimilation of <i>n</i> -alkanes and fatty acids in yeast <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2013, 13, 233-240.                                                          | 2.3  | 40        |
| 10 | A Basic Helix-Loop-Helix Transcription Factor Essential for Cytochrome P450 Induction in Response to<br>Alkanes in Yeast Yarrowia lipolytica. Journal of Biological Chemistry, 2004, 279, 22183-22189.                                                   | 3.4  | 39        |
| 11 | Fatty Aldehyde Dehydrogenase Multigene Family Involved in the Assimilation of n-Alkanes in Yarrowia<br>lipolytica. Journal of Biological Chemistry, 2014, 289, 33275-33286.                                                                              | 3.4  | 37        |
| 12 | Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genetics and Biology, 2012, 49, 58-64.                                                                                    | 2.1  | 36        |
| 13 | Δ12-fatty acid desaturase is involved in growth at low temperature in yeast Yarrowia lipolytica.<br>Biochemical and Biophysical Research Communications, 2017, 488, 165-170.                                                                             | 2.1  | 34        |
| 14 | Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast. Journal of Biological Chemistry, 2018, 293, 5636-5648.                                                                              | 3.4  | 33        |
| 15 | Incorporation and remodeling of extracellular phosphatidylcholine with short acyl residues in<br>Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008,<br>1781, 391-399.                                 | 2.4  | 30        |
| 16 | Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Research, 2015, 15, .                                                                                          | 2.3  | 26        |
| 17 | An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes<br>involved in fatty acid utilization in the yeast Yarrowia lipolytica. Biochemical and Biophysical<br>Research Communications, 2010, 402, 731-735. | 2.1  | 23        |
| 18 | Involvement of acyl-CoA synthetase genes in <i>n</i> -alkane assimilation and fatty acid utilization in yeast <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2015, 15, fov031.                                                                        | 2.3  | 23        |

*<b>RYOUICHI FUKUDA* 

| #  | Article                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate<br>derepression of ARE1 (alkane-responsive element one)-mediated transcription control. Fungal Genetics<br>and Biology, 2013, 61, 100-110.                                                                            | 2.1 | 21        |
| 20 | Incorporation and remodeling of phosphatidylethanolamine containing short acyl residues in yeast.<br>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 635-645.                                                                                                                       | 2.4 | 19        |
| 21 | Utilization of Hydrophobic Substrate by Yarrowia lipolytica. Microbiology Monographs, 2013, , 111-119.                                                                                                                                                                                                                | 0.6 | 17        |
| 22 | Disruption of the <i>SCS2</i> Ortholog in the Alkane-Assimilating Yeast <i>Yarrowia<br/>lipolytica</i> Impairs Its Growth on <i>n</i> -Decane, but Does Not Impair Inositol Prototrophy.<br>Bioscience, Biotechnology and Biochemistry, 2008, 72, 2219-2223.                                                          | 1.3 | 15        |
| 23 | Acidic phospholipid-independent interaction of Yas3p, an Opi1-family transcriptional repressor of Yarrowia lipolytica, with the endoplasmic reticulum. Yeast, 2015, 32, 691-701.                                                                                                                                      | 1.7 | 15        |
| 24 | Type II phosphatidylserine decarboxylase is crucial for the growth and morphogenesis of the filamentous fungus Aspergillus nidulans. Journal of Bioscience and Bioengineering, 2021, 131, 139-146.                                                                                                                    | 2.2 | 10        |
| 25 | Mitochondrially-targeted bacterial phosphatidylethanolamine methyltransferase sustained<br>phosphatidylcholine synthesis of a Saccharomyces cerevisiae Δpem1 Δpem2 double mutant without<br>exogenous choline supply. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014,<br>1841, 1264-1271. | 2.4 | 8         |
| 26 | Human CTP:phosphoethanolamine cytidylyltransferase: Enzymatic properties and unequal catalytic roles of CTP-binding motifs in two cytidylyltransferase domains. Biochemical and Biophysical Research Communications, 2014, 449, 26-31.                                                                                | 2.1 | 7         |
| 27 | Osh6p, a homologue of the oxysterol-binding protein, is involved in production of functional<br>cytochrome P450 belonging to CYP52 family in n-alkane-assimilating yeast Yarrowia lipolytica.<br>Biochemical and Biophysical Research Communications, 2018, 499, 836-842.                                             | 2.1 | 6         |
| 28 | Suppression of respiratory growth defect of mitochondrial phosphatidylserine decarboxylase<br>deficient mutant by overproduction of Sfh1, a Sec14 homolog, in yeast. PLoS ONE, 2019, 14, e0215009.                                                                                                                    | 2.5 | 6         |
| 29 | Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant<br>defective in de novo and salvage phosphatidylcholine synthesis. Biochemical and Biophysical Research<br>Communications, 2014, 445, 289-293.                                                                             | 2.1 | 4         |
| 30 | The membraneâ€bound O â€acyltransferase Ale1 transfers an acyl moiety to newly synthesized 2â€alkyl―sn<br>â€glyceroâ€3â€phosphocholine in yeast. FEBS Letters, 2018, 592, 1829-1836.                                                                                                                                  | 2.8 | 3         |
| 31 | Deletion of Aspergillus nidulans cpsA/rseA induces increased extracellular hydrolase production in solid-state culture partly through the high osmolarity glycerol pathway. Journal of Bioscience and Bioengineering, 2021, 131, 589-598.                                                                             | 2.2 | 3         |
| 32 | Acyl-CoA synthetases, Aal4 and Aal7, are involved in the utilization of exogenous fatty acids in <i>Yarrowia lipolytica</i> . Journal of General and Applied Microbiology, 2021, 67, 9-14.                                                                                                                            | 0.7 | 2         |
| 33 | Orthologs of Saccharomyces cerevisiae SFH2, genes encoding Sec14 family proteins, implicated in utilization of n-alkanes and filamentous growth in response to n-alkanes in Yarrowia lipolytica. FEMS Yeast Research, 2022, , .                                                                                       | 2.3 | 2         |
| 34 | Suppression of respiratory growth defect of mutant deficient in mitochondrial phospholipase A1 by overexpression of genes involved in coenzyme Q synthesis in Saccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1633-1639.                                                              | 1.3 | 1         |