Wei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744817/publications.pdf

Version: 2024-02-01

8755 14208 19,911 271 75 128 citations h-index g-index papers 275 275 275 19389 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Ordered Mesoporous Black TiO ₂ as Highly Efficient Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2014, 136, 9280-9283.	13.7	878
2	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	11,2	594
3	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2016, 26, 6822-6829.	14.9	583
4	Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chemical Society Reviews, 2013, 42, 9509.	38.1	564
5	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	10.3	460
6	Recent advances in floating TiO2-based photocatalysts for environmental application. Applied Catalysis B: Environmental, 2018, 225, 452-467.	20.2	443
7	Wellâ€Ordered Largeâ€Pore Mesoporous Anatase TiO ₂ with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 2011, 21, 1922-1930.	14.9	431
8	Facile solvothermal synthesis of hierarchical flower-like Bi ₂ MoO ₆ hollow spheres as high performance visible-light driven photocatalysts. Journal of Materials Chemistry, 2011, 21, 887-892.	6.7	427
9	Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production. Advanced Materials, 2018, 30, e1804282.	21.0	411
10	P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 664-671.	20.2	396
11	Surface Modulation of Hierarchical MoS ₂ Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1807086.	14.9	314
12	Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2017, 201, 119-127.	20.2	310
13	Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. ChemSusChem, 2013, 6, 880-889.	6.8	257
14	3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm, 2011, 13, 2994.	2.6	237
15	Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance. Scientific Reports, 2017, 7, 41978.	3.3	211
16	Facile strategy for controllable synthesis of stable mesoporous black TiO ₂ hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 7495-7502.	10.3	198
17	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. Advanced Materials, 2017, 29, 1703258.	21.0	188
18	Defects-engineering of magnetic Î ³ -Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Applied Catalysis B: Environmental, 2019, 240, 319-328.	20.2	188

#	Article	IF	Citations
19	Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews, 2022, 156, 111980.	16.4	179
20	Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. Journal of Materials Chemistry, 2012, 22, 16471.	6.7	176
21	Cubic quantum dot/hexagonal microsphere ZnIn ₂ S ₄ heterophase junctions for exceptional visible-light-driven photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2017, 5, 8451-8460.	10.3	176
22	Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chemical Engineering Journal, 2020, 379, 122295.	12.7	170
23	Defect-mediated electron–hole separation in semiconductor photocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 1240-1254.	6.0	166
24	Fabrication of 3 D Mesoporous Black TiO ₂ /MoS ₂ /TiO ₂ Nanosheets for Visibleâ€Lightâ€Driven Photocatalysis. ChemSusChem, 2016, 9, 1118-1124.	6.8	164
25	Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts. Applied Catalysis B: Environmental, 2019, 243, 502-512.	20.2	164
26	Hollow MoSe2@Bi2S3/CdS Core-Shell Nanostructure as Dual Z-Scheme Heterojunctions with Enhanced Full Spectrum Photocatalytic-Photothermal Performance. Applied Catalysis B: Environmental, 2021, 281, 119482.	20.2	160
27	Ti3+-TiO2/g-C3N4 mesostructured nanosheets heterojunctions as efficient visible-light-driven photocatalysts. Journal of Catalysis, 2018, 357, 90-99.	6.2	157
28	Ti ³⁺ Self-Doped Blue TiO ₂ (B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. ACS Applied Materials & Solar-Driven Photocatalytic Performance Photocatalytic Photocatalytic Performance Photocatalytic Photoc	8.0	151
29	Mesoporous black TiO2-x/Ag nanospheres coupled with g-C3N4 nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts. Journal of Hazardous Materials, 2018, 343, 181-190.	12.4	147
30	Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@Znln2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 262, 118202.	20.2	143
31	Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 7008.	2.8	138
32	In Situ Growth of TiO ₂ in Interlayers of Expanded Graphite for the Fabrication of TiO ₂ â€"Graphene with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2011, 17, 8379-8387.	3.3	135
33	<i>In Situ</i> Carbon-Coated Yolk–Shell V ₂ O ₃ Microspheres for Lithium-Ion Batteries. ACS Applied Materials & Diverge Carbon (1998) 1998 1998 1998 1998 1998 1998 1998	8.0	132
34	Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Applied Catalysis B: Environmental, 2018, 226, 499-508.	20.2	131
35	Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale, 2014, 6, 7369.	5.6	130
36	Facile Synthesis of High-Crystallinity Graphitic Carbon/Fe ₃ C Nanocomposites As Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3663-3670.	8.0	127

#	Article	IF	CITATIONS
37	Mesoporous TiO ₂ : Preparation, Doping, and as a Composite for Photocatalysis. ChemCatChem, 2013, 5, 885-894.	3.7	126
38	Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production. Chemical Engineering Journal, 2022, 427, 131830.	12.7	126
39	Oxygen-Doped MoS ₂ Nanospheres/CdS Quantum Dots/g-C ₃ N ₄ Nanosheets Super-Architectures for Prolonged Charge Lifetime and Enhanced Visible-Light-Driven Photocatalytic Performance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7104-7111.	8.0	122
40	Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chemical Engineering Journal, 2020, 382, 123011.	12.7	122
41	Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere, 2010, 81, 555-561.	8.2	117
42	Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2017, 219, 10-17.	20.2	113
43	WS2 quantum dots/MoS2@WO3-x core-shell hierarchical dual Z-scheme tandem heterojunctions with wide-spectrum response and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 257, 117913.	20.2	113
44	Hierarchical composites of TiO2 nanowire arrays on reduced graphene oxide nanosheets with enhanced photocatalytic hydrogen evolution performance. Journal of Materials Chemistry A, 2014, 2, 4366-4374.	10.3	112
45	High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Applied Catalysis B: Environmental, 2016, 180, 521-529.	20.2	108
46	Mesoporous TiO $<$ sub $>2<$ sub $>$ l $^1\pm$ -Fe $<$ sub $>2<$ sub $>0<$ sub $>3<$ sub $>$: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption. Journal of Physical Chemistry C, 2008, 112, 19584-19589.	3.1	107
47	Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. CrystEngComm, 2013, 15, 5144.	2.6	106
48	Hollow semiconductor photocatalysts for solar energy conversion. , 2022, 1, 100021.		106
49	Mesoporous black Ti 3+ /N-TiO 2 spheres for efficient visible-light-driven photocatalytic performance. Chemical Engineering Journal, 2017, 325, 199-207.	12.7	105
50	Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications. Journal of Materials Chemistry A, 2013, 1, 6961.	10.3	102
51	Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Research, 2014, 7, 731-742.	10.4	102
52	Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 206, 336-343.	20.2	102
53	Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation. Journal of Hazardous Materials, 2009, 166, 939-944.	12.4	101
54	Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. Journal of Power Sources, 2018, 379, 74-83.	7.8	101

#	Article	IF	CITATIONS
55	Hollow flower-like polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects. Applied Catalysis B: Environmental, 2020, 272, 118978.	20.2	101
56	Wellâ€Dispersed CoS Nanoparticles on a Functionalized Graphene Nanosheet Surface: A Counter Electrode of Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 474-482.	3.3	100
57	Synthesis of Defect-Rich Titanium Terephthalate with the Assistance of Acetic Acid for Room-Temperature Oxidative Desulfurization of Fuel Oil. ACS Catalysis, 2020, 10, 2384-2394.	11.2	100
58	Thin carbon layer coated Ti ³⁺ -TiO ₂ nanocrystallites for visible-light driven photocatalysis. Nanoscale, 2015, 7, 5035-5045.	5.6	97
59	Growth of small sized CeO2 particles in the interlayers of expanded graphite for high-performance room temperature NOx gas sensors. Journal of Materials Chemistry A, 2013, 1, 12742.	10.3	96
60	Ti ³⁺ Self-Doped Black TiO ₂ Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 6894-6901.	6.7	95
61	Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature. Nanoscale, 2013, 5, 8569.	5.6	94
62	In situ synthesis of a NiS/Ni ₃ S ₂ nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells. Nanoscale, 2015, 7, 1623-1626.	5.6	94
63	Plasmon Ag nanoparticle/Bi2S3 ultrathin nanobelt/oxygen-doped flower-like MoS2 nanosphere ternary heterojunctions for promoting charge separation and enhancing solar-driven photothermal and photocatalytic performances. Applied Catalysis B: Environmental, 2020, 274, 118947.	20.2	94
64	Facile Synthesis of Hierarchical Porous TiO ₂ Ceramics with Enhanced Photocatalytic Performance for Micropolluted Pesticide Degradation. ACS Applied Materials & Enhanced Photocatalytic 16653-16660.	8.0	93
65	Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2-x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. Journal of Hazardous Materials, 2019, 364, 117-124.	12.4	93
66	Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Applied Catalysis B: Environmental, 2018, 221, 235-242.	20.2	92
67	Facile Fabrication of Hierarchical TiO ₂ Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting. ACS Applied Materials & mp; Interfaces, 2013, 5, 8314-8320.	8.0	91
68	Facet-dependent NiS ₂ polyhedrons on counter electrodes for dye-sensitized solar cells. Chemical Communications, 2015, 51, 12863-12866.	4.1	90
69	Controlled synthesis of thorny anatase TiO ₂ tubes for construction of Ag–AgBr/TiO ₂ composites as highly efficient simulated solar-light photocatalyst. Journal of Materials Chemistry, 2012, 22, 2081-2088.	6.7	84
70	Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Applied Surface Science, 2021, 537, 147890.	6.1	84
71	Facile Synthesis of Co ₉ S ₈ Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1863-1871.	6.7	82
72	TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochimica Acta, 2009, 54, 7350-7356.	5.2	81

#	Article	IF	Citations
73	Porous Cobalt Titanate Nanorod: A New Candidate for Visible Lightâ€Driven Photocatalytic Water Oxidation. ChemCatChem, 2014, 6, 265-270.	3.7	81
74	Fine‶uning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. Advanced Functional Materials, 2018, 28, 1804654.	14.9	80
75	Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. Journal of Colloid and Interface Science, 2018, 528, 174-183.	9.4	80
76	Plasmon Ag-Promoted Solar–Thermal Conversion on Floating Carbon Cloth for Seawater Desalination and Sewage Disposal. ACS Applied Materials & Loter 1, 7066-7073.	8.0	80
77	Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticle-decorated self-floating porous black TiO2 foams. Applied Catalysis B: Environmental, 2018, 220, 111-117.	20.2	78
78	Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 239, 317-323.	20.2	77
79	Hollow Octahedral Cu _{2–<i>x</i>} S/CdS/Bi ₂ S ₃ p–n–p Type Tandem Heterojunctions for Efficient Photothermal Effect and Robust Visible-Light-Driven Photocatalytic Performance. ACS Applied Materials & Diterfaces, 2020, 12, 40328-40338.	8.0	77
80	From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Research, 2015, 8, 2998-3010.	10.4	76
81	Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe ₂ O ₄ /ZnIn ₂ S ₄ nanosheet stereoscopic films for exceptional visible light photocatalytic H ₂ evolution performance. Nanoscale, 2017, 9, 5912-5921.	5.6	76
82	Hollow Nanoboxes Cu _{2â€x} S@ZnIn ₂ S ₄ Coreâ€6hell Sâ€6cheme Heterojunction with Broadâ€6pectrum Response and Enhanced Photothermalâ€Photocatalytic Performance. Small, 2022, 18, .	10.0	76
83	Periodically Ordered Nanoporous Perovskite Photoelectrode for Efficient Photoelectrochemical Water Splitting. ACS Nano, 2018, 12, 6335-6342.	14.6	74
84	Precisely photothermal controlled releasing of antibacterial agent from Bi2S3 hollow microspheres triggered by NIR light for water sterilization. Chemical Engineering Journal, 2020, 381, 122630.	12.7	74
85	Black N/Hâ€TiO ₂ Nanoplates with a Flowerâ€Like Hierarchical Architecture for Photocatalytic Hydrogen Evolution. ChemSusChem, 2016, 9, 2841-2848.	6.8	73
86	Assembly of \hat{l}^2 -Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 951-957.	3.1	72
87	Ni ₃ S ₂ Nanosheets in Situ Epitaxially Grown on Nanorods as High Active and Stable Homojunction Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2474-2481.	6.7	72
88	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	10.0	72
89	Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency. Journal of Materials Chemistry A, 2013, 1, 9853.	10.3	70
90	Meso-g-C3N4/g-C3N4 nanosheets laminated homojunctions as efficient visible-light-driven photocatalysts. International Journal of Hydrogen Energy, 2017, 42, 25969-25979.	7.1	70

#	Article	IF	Citations
91	B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4, 5184.	3.3	68
92	Hierarchical SnS ₂ /CulnS ₂ Nanosheet Heterostructure Films Decorated with C ₆₀ for Remarkable Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9093-9101.	8.0	68
93	A floating macro/mesoporous crystalline anatase TiO ₂ ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Transactions, 2014, 43, 790-798.	3.3	67
94	In-situ S-doped porous anatase TiO2 nanopillars for high-efficient visible-light photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 1535-1541.	7.1	65
95	Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Science China Materials, 2018, 61, 822-830.	6.3	65
96	Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process. Chemical Communications, 2008, , 5411.	4.1	64
97	NaYF4:Er3+/Yb3+–graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 20381.	6.7	63
98	A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chemical Communications, 2013, 49, 8510.	4.1	62
99	In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 219, 572-579.	20.2	61
100	Wide spectral response photothermal catalysis-fenton coupling systems with 3D hierarchical Fe3O4/Ag/Bi2MoO6 ternary hetero-superstructural magnetic microspheres for efficient high-toxic organic pollutants removal. Journal of Colloid and Interface Science, 2019, 533, 24-33.	9.4	61
101	BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Applied Materials Today, 2020, 20, 100719.	4.3	61
102	Gear-shaped mesoporous NH2-MIL-53(Al)/CdS P-N heterojunctions as efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental, 2021, 291, 120106.	20.2	60
103	A Floating Porous Crystalline TiO ₂ Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. European Journal of Inorganic Chemistry, 2013, 2013, 2411-2417.	2.0	59
104	Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells. Electrochimica Acta, 2013, 96, 155-163.	5.2	59
105	Ni ²⁺ and Ti ³⁺ co-doped porous black anatase TiO ₂ with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Advances, 2015, 5, 107150-107157.	3.6	59
106	Nitrogen removal and biofilm structure affected by COD/NH4+–N in a biofilter with porous sludge-ceramsite. Separation and Purification Technology, 2012, 94, 9-15.	7.9	58
107	Hierarchical Composite of Ag/AgBr Nanoparticles Supported on Bi ₂ MoO ₆ Hollow Spheres for Enhanced Visibleâ€Light Photocatalytic Performance. ChemPlusChem, 2013, 78, 117-123.	2.8	58
108	Synergistic effect of Mo ₂ N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo ₂ N/SBA-15. Catalysis Science and Technology, 2016, 6, 2403-2412.	4.1	58

#	Article	IF	CITATIONS
109	Mesoporous black N-TiO2â^'x hollow spheres as efficient visible-light-driven photocatalysts. Journal of Catalysis, 2017, 356, 246-254.	6.2	58
110	Enhanced Photocatalytic Hydrogen Evolution over Hierarchical Composites of ZnIn ₂ S ₄ Nanosheets Grown on MoS ₂ Slices. Chemistry - an Asian Journal, 2014, 9, 1291-1297.	3.3	57
111	Multi-modal mesoporous TiO ₂ â€"ZrO ₂ composites with high photocatalytic activity and hydrophilicity. Nanotechnology, 2008, 19, 035610.	2.6	56
112	Novel heterogeneous CdS nanoparticles/NiTiO3 nanorods with enhanced visible-light-driven photocatalytic activity. RSC Advances, 2013, 3, 18305.	3.6	56
113	In situ controlled growth of well-dispersed gold nanoparticles in TiO ₂ nanotube arrays as recyclable substrates for surface-enhanced Raman scattering. Dalton Transactions, 2012, 41, 1020-1026.	3.3	54
114	O, S-Dual-Vacancy Defects Mediated Efficient Charge Separation in ZnIn ₂ S ₄ /Black TiO ₂ Heterojunction Hollow Spheres for Boosting Photocatalytic Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37545-37552.	8.0	52
115	The enhanced co-catalyst free photocatalytic hydrogen evolution and stability based on indenofluorene-containing donor-acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction. Applied Catalysis B: Environmental, 2019, 259, 118067.	20.2	51
116	One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance. Journal of Solid State Chemistry, 2010, 183, 2720-2725.	2.9	50
117	Hierarchical FeTiO ₃ –TiO ₂ hollow spheres for efficient simulated sunlight-driven water oxidation. Nanoscale, 2015, 7, 15924-15934.	5.6	50
118	Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts. International Journal of Hydrogen Energy, 2019, 44, 16348-16358.	7.1	49
119	Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. Journal of Hazardous Materials, 2019, 377, 330-340.	12.4	48
120	Recent advances in core–shell metal organic frame-based photocatalysts for solar energy conversion. Coordination Chemistry Reviews, 2021, 446, 214123.	18.8	48
121	Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+. Dalton Transactions, 2013, 42, 7971.	3.3	47
122	Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO2â ⁻ nanorods. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 198-204.	5.3	47
123	808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Materials Science and Engineering C, 2017, 81, 252-260.	7.3	46
124	Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2019, 554, 324-334.	9.4	44
125	Hollow cubic Cu2-xS/Fe-POMs/AgVO3 dual Z-scheme heterojunctions with wide-spectrum response and enhanced photothermal and photocatalytic-fenton performance. Applied Catalysis B: Environmental, 2021, 298, 120628.	20.2	44
126	Ti3+-TiO2/Ce3+-CeO2 Nanosheet heterojunctions as efficient visible-light-driven photocatalysts. Materials Research Bulletin, 2018, 100, 191-197.	5.2	43

#	Article	IF	CITATIONS
127	Enhanced charge transfer and separation of hierarchical hydrogenated TiO ₂ nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H ₂ production activity. Nanoscale, 2018, 10, 4041-4050.	5.6	39
128	WO3/BiVO4/BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation. Journal of Alloys and Compounds, 2019, 802, 76-85.	5.5	39
129	All-Solid Z-Scheme Bi–BiOCl/AgCl Heterojunction Microspheres for Improved Electron–Hole Separation and Enhanced Visible Light-Driven Photocatalytic Performance. Langmuir, 2019, 35, 7887-7895.	3.5	39
130	Surface Plasmon Resonanceâ€Enhanced Visibleâ€NIRâ€Driven Photocatalytic and Photothermal Catalytic Performance by Ag/Mesoporous Black TiO ₂ Nanotube Heterojunctions. Chemistry - an Asian Journal, 2019, 14, 177-186.	3.3	39
131	Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2021, 582, 752-763.	9.4	39
132	Room temperature solution synthesis of hierarchical bow-like Cu2O with high visible light driven photocatalytic activity. RSC Advances, 2012, 2, 2875.	3.6	38
133	Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells. Nano Research, 2016, 9, 2862-2874.	10.4	38
134	Plasma Cu-decorated TiO2â^'x/CoP particle-level hierarchical heterojunctions with enhanced photocatalytic-photothermal performance. Journal of Hazardous Materials, 2021, 414, 125487.	12.4	36
135	Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication, characterization, and NOx gas sensors at room temperature. Journal of Materials Chemistry, 2012, 22, 24814.	6.7	35
136	Controlled synthesis and luminescence properties of rhombic NaLn(MoO4)2 submicrocrystals. CrystEngComm, 2012, 14, 5015.	2.6	35
137	3D urchin-like black TiO _{2â^'x} /carbon nanotube heterostructures as efficient visible-light-driven photocatalysts. RSC Advances, 2017, 7, 453-460.	3.6	35
138	Zinc sulfide quantum dots/zinc oxide nanospheres/bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance. Journal of Colloid and Interface Science, 2021, 592, 259-270.	9.4	35
139	Treatment of antibiotic fermentationâ€based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process. Environmental Progress and Sustainable Energy, 2014, 33, 170-177.	2.3	34
140	Facile synthesis of high-thermostably ordered mesoporous TiO 2 /SiO 2 nanocomposites: An effective bifunctional candidate for removing arsenic contaminations. Journal of Colloid and Interface Science, 2017, 485, 32-38.	9.4	34
141	Ni ₂ P Entwined by Graphite Layers as a Low-Pt Electrocatalyst in Acidic Media for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9999-10010.	8.0	34
142	Bi plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunctions as efficient visible-light-driven photocatalysts. Journal of Alloys and Compounds, 2018, 750, 659-668.	5.5	34
143	Surface defect and rational design of TiO2â^'x nanobelts/ g-C3N4 nanosheets/ CdS quantum dotsÂhierarchical structure for enhanced visible-light-driven photocatalysis. International Journal of Hydrogen Energy, 2019, 44, 1586-1596.	7.1	34
144	Dual plasmons-promoted electron-hole separation for direct Z-scheme Bi3O4Cl/AgCl heterojunction ultrathin nanosheets and enhanced photocatalytic-photothermal performance. Journal of Hazardous Materials, 2020, 384, 121268.	12.4	34

#	Article	IF	CITATIONS
145	Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO ₂ nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 3476-3482.	5.5	34
146	Engineering Surface Nâ€Vacancy Defects of Ultrathin Mesoporous Carbon Nitride Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts. Solar Rrl, 2021, 5, .	5.8	34
147	Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells. Physical Chemistry Chemical Physics, 2010, 12, 9205.	2.8	33
148	CdS quantum dots/Ti3+-TiO2 nanobelts heterojunctions as efficient visible-light-driven photocatalysts. Materials Research Bulletin, 2018, 103, 114-121.	5.2	33
149	Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Science China Materials, 2016, 59, 1003-1016.	6.3	32
150	In Situ Ti ³⁺ /N-Codoped Three-Dimensional (3D) Urchinlike Black TiO ₂ Architectures as Efficient Visible-Light-Driven Photocatalysts. Industrial & Engineering Chemistry Research, 2017, 56, 7948-7956.	3.7	32
151	Wide-spectrum response urchin-like Bi2S3 spheres and ZnS quantum dots co-decorated mesoporous g-C3N4 nanosheets heterojunctions for promoting charge separation and enhancing photothermal-photocatalytic performance. Applied Surface Science, 2020, 527, 146653.	6.1	32
152	Engineering surface oxygen vacancy of mesoporous CeO2 nanosheets assembled microspheres for boosting solar-driven photocatalytic performance. Chinese Chemical Letters, 2022, 33, 378-384.	9.0	32
153	Surface plasma Ag-decorated single-crystalline TiO2â^x(B) nanorod/defect-rich g-C3N4 nanosheet ternary superstructure 3D heterojunctions as enhanced visible-light-driven photocatalyst. Journal of Colloid and Interface Science, 2019, 542, 63-72.	9.4	31
154	Facile Synthesis of Porous Zn ₂ Ti ₃ O ₈ Nanorods for Photocatalytic Overall Water Splitting. ChemCatChem, 2014, 6, 2258-2262.	3.7	30
155	A Facile Synthesis of Hierarchically Porous TiO2 Microspheres with Carbonaceous Species for Visible-light Photocatalysis. Journal of Materials Science and Technology, 2017, 33, 39-46.	10.7	30
156	NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Applied Surface Science, 2021, 568, 150981.	6.1	30
157	In-situ interstitial zinc doping-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chemical Engineering Journal, 2022, 435, 135074.	12.7	30
158	Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Applied Surface Science, 2010, 256, 3740-3745.	6.1	29
159	Hierarchical Nâ€Đoped TiO ₂ Microspheres with Exposed (001) Facets for Enhanced Visible Light Catalysis. European Journal of Inorganic Chemistry, 2014, 2014, 2146-2152.	2.0	29
160	Multifunctional Floating Titania oated Macro/Mesoporous Photocatalyst for Efficient Contaminant Removal. ChemPlusChem, 2015, 80, 623-629.	2.8	29
161	Large-scale synthesis of stable mesoporous black TiO ₂ nanosheets for efficient solar-driven photocatalytic hydrogen evolution via an earth-abundant low-cost biotemplate. RSC Advances, 2016, 6, 50506-50512.	3.6	29
162	Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi ₅ O ₇ I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance. Catalysis Science and Technology, 2019, 9, 6714-6722.	4.1	29

#	Article	IF	Citations
163	Inâ€Situ Intercalating Expandable Graphite for Mesoporous Carbon/Graphite Nanosheet Composites as Highâ€Performance Supercapacitor Electrodes. ChemSusChem, 2012, 5, 2442-2450.	6.8	28
164	A New Layered Photocathode with Porous NiO Nanosheets: An Effective Candidate for pâ€Type Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 3085-3090.	3.3	28
165	Oxygen vacancy-mediated efficient electron-hole separation for C-N-S-tridoped single crystal black TiO2(B) nanorods as visible-light-driven photocatalysts. Applied Surface Science, 2018, 457, 287-294.	6.1	28
166	Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arabian Journal of Chemistry, 2020, 13, 2568-2578.	4.9	28
167	An efficient photoÂFenton system for in-situ evolution of H2O2 via defective iron-based metal organic framework@Znln2S4 core-shell Z-scheme heterojunction nanoreactor. Journal of Hazardous Materials, 2022, 437, 129436.	12.4	28
168	Fabrication of a 3D Hierarchical Flowerâ€Like MgO Microsphere and Its Application as Heterogeneous Catalyst. European Journal of Inorganic Chemistry, 2012, 2012, 954-960.	2.0	27
169	TiO2-B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochimica Acta, 2013, 88, 263-269.	5.2	27
170	Monodispersed Nickel Phosphide Nanocrystals in Situ Grown on Reduced Graphene Oxide with Controllable Size and Composition as a Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5920-5926.	6.7	27
171	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	9.0	27
172	Solar-induced self-assembly of TiO2–β-cyclodextrin–MWCNT composite wires. Physical Chemistry Chemical Physics, 2009, 11, 1713.	2.8	26
173	Recovery of silicon from sewage sludge for production of high-purity nano-SiO2. Chemosphere, 2013, 90, 2332-2339.	8.2	26
174	Synergistic Effect of Tungsten Nitride and Palladium for the Selective Hydrogenation of Cinnamaldehyde at the C=C bond. ChemCatChem, 2016, 8, 1718-1726.	3.7	26
175	C,N co-doped porous TiO ₂ hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Transactions, 2018, 47, 4877-4884.	3.3	26
176	Phosphorus-doping CdS@NiFe layered double hydroxide as Z-Scheme heterojunction for enhanced photocatalytic and photo-fenton degradation performance. Separation and Purification Technology, 2021, 274, 119066.	7.9	26
177	Polyoxometalate-based yolk@shell dual Z-scheme superstructure tandem heterojunction nanoreactors: encapsulation and confinement effects. Journal of Materials Chemistry A, 2021, 10, 180-191.	10.3	26
178	A facile and green synthesis route towards two-dimensional TiO2@Ag heterojunction structure with enhanced visible light photocatalytic activity. CrystEngComm, 2013, 15, 5821.	2.6	25
179	Super-stable non-woven fabric-based membrane as a high-efficiency oil/water separator in full pH range. RSC Advances, 2017, 7, 19764-19770.	3.6	25
180	Plasmon Ag decorated 3D urchinlike N-TiO2â°'x for enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2018, 521, 102-110.	9.4	25

#	Article	IF	Citations
181	Hierarchical porous titanium terephthalate based material with highly active sites for deep oxidative desulfurization. Microporous and Mesoporous Materials, 2018, 270, 241-247.	4.4	25
182	Surface defect-mediated efficient electron-hole separation in hierarchical flower-like bismuth molybdate hollow spheres for enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2018, 531, 664-671.	9.4	25
183	Recent advances in metal organic frame photocatalysts for environment and energy applications. Applied Materials Today, 2020, 21, 100821.	4.3	25
184	Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. Journal of Colloid and Interface Science, 2020, 568, 255-263.	9.4	25
185	Surface engineering of mesoporous anatase titanium dioxide nanotubes for rapid spatial charge separation on horizontal-vertical dimensions and efficient solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 586, 75-83.	9.4	25
186	Hierarchical Z-scheme Bi2S3/CdS heterojunction: Controllable morphology and excellent photocatalytic antibacterial. Applied Surface Science, 2021, 568, 150923.	6.1	24
187	Hollow Core-Shell potassium Phosphomolybdate@Cadmium Sulfide@Bismuth sulfide Z-Scheme tandem heterojunctions toward optimized Photothermal-Photocatalytic performance. Journal of Colloid and Interface Science, 2022, 607, 942-953.	9.4	24
188	MoS2@In2S3/Bi2S3 Core-shell dual Z-scheme tandem heterojunctions with Broad-spectrum response and enhanced Photothermal-photocatalytic performance. Chemical Engineering Journal, 2022, 431, 133355.	12.7	24
189	Recent advances in bismuth-based photocatalysts: Environment and energy applications. Green Energy and Environment, 2023, 8, 1232-1264.	8.7	24
190	Preparation, characterization, and photo-induced hydrophilicity of nanocrystalline anatase thin films synthesized through evaporation-induced assembly. Nanotechnology, 2005, 16, 3006-3011.	2.6	23
191	Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS. Nano Research, 2017, 10, 263-275.	10.4	23
192	The sesame ball-like CoS/MoS2 nanospheres as efficient counter electrode catalysts for dye-sensitized solar cells. Journal of Alloys and Compounds, 2018, 739, 568-576.	5 . 5	23
193	Hydrogenated Cu ₂ OAu@CeO ₂ Z-scheme catalyst for photocatalytic oxidation of amines to imines. Catalysis Science and Technology, 2018, 8, 5535-5543.	4.1	23
194	Synergistic effect of Ni and Fe in Fe-doped NiS2 counter electrode for dye-sensitized solar cells: Experimental and DFT studies. Electrochimica Acta, 2018, 284, 24-29.	5.2	23
195	Solvothermal Synthesis, Characterization, and Formation Mechanism of a Singleâ€Layer Anatase TiO ₂ Nanosheet with a Porous Structure. European Journal of Inorganic Chemistry, 2011, 2011, 754-760.	2.0	22
196	Pure phase orthorhombic MgTi ₂ O ₅ photocatalyst for H ₂ production. RSC Advances, 2015, 5, 106151-106155.	3.6	22
197	Hydrophilicity and formation mechanism of large-pore mesoporous TiO2thin films with tunable pore diameters. Nanotechnology, 2006, 17, 3641-3648.	2.6	21
198	Facile Strategy to Fabricate Uniform Black TiO ₂ Nanothorns/Graphene/Black TiO ₂ Nanothorns Sandwichlike Nanosheets for Excellent Solarâ€Driven Photocatalytic Performance. ChemCatChem, 2016, 8, 3240-3246.	3.7	21

#	Article	IF	Citations
199	Interfaceâ€Hybridizationâ€Enhanced Photothermal Performance of Polypyrrole/Polydopamine Heterojunctions on Porous Nanoparticles. Macromolecular Rapid Communications, 2019, 40, e1900263.	3.9	21
200	In situ growth of Co9S8 nanocrystals on reduced graphene oxide for the enhanced catalytic performance of dye-sensitized solar cell. Journal of Alloys and Compounds, 2019, 803, 216-223.	5.5	21
201	Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length. Dalton Transactions, 2011, 40, 3808.	3.3	20
202	Silica direct evaporation: a size-controlled approach to SiC/carbon nanosheet composites as Pt catalyst supports for superior methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 24139-24147.	10.3	20
203	MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Research, 2017, 10, 295-304.	10.4	20
204	Dual oxygen vacancy defects-mediated efficient electron-hole separation via surface engineering of Ag/Bi2MoO6 nanosheets/TiO2 nanobelts ternary heterostructures. Journal of Industrial and Engineering Chemistry, 2019, 78, 155-163.	5.8	20
205	Tuning in BiVO4/Bi4V2O10 porous heterophase nanospheres for synergistic photocatalytic degradation of organic pollutants. Applied Surface Science, 2019, 470, 631-638.	6.1	20
206	Improved charge separation of NiS nanoparticles modified defect-engineered black TiO ₂ hollow nanotubes for boosting solar-driven photocatalytic H ₂ evolution. Nanotechnology, 2019, 30, 125703.	2.6	20
207	CdS quantum dots modified surface oxygen vacancy defect ZnO1-x-TiO2-x solid solution sphere as Z-Scheme heterojunctions for efficient visible light-driven photothermal-photocatalytic performance. Journal of Alloys and Compounds, 2020, 826, 154218.	5.5	20
208	Influence of calcination temperatures on the photocatalytic activity and photo-induced hydrophilicity of wormhole-like mesoporous TiO2. Nanotechnology, 2006, 17, 1363-1369.	2.6	19
209	Oneâ€pot synthesis of silver particle aggregation as highly active SERS substrate. Journal of Raman Spectroscopy, 2011, 42, 5-11.	2.5	19
210	Structure and Properties of Noncrystalline Nano-Al(OH) ₃ Reclaimed from Carbonized Residual Wastewater Treatment Sludge. Environmental Science & Environmental Science & 2012, 46, 4560-4566.	10.0	19
211	The self-supported Zn-doped CoNiP microsphere/thorn hierarchical structures as efficient bifunctional catalysts for water splitting. Electrochimica Acta, 2020, 339, 135933.	5.2	19
212	Surface defects induced charge imbalance for boosting charge separation and solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 596, 12-21.	9.4	19
213	Multifunctional catalysts with high catalytic activities: Flower-like Co9S8 microballs assembled with weak crystalline pea pod-shaped nanowires. International Journal of Hydrogen Energy, 2018, 43, 18832-18842.	7.1	18
214	Morphology Effect of NiSe Hierarchical Microspheres on the Performance of Dye-Sensitized Solar Cells. ACS Applied Nano Materials, 2018, 1, 4900-4909.	5.0	18
215	Homojunction and defect synergy-mediated electron–hole separation for solar-driven mesoporous rutile/anatase TiO ₂ microsphere photocatalysts. RSC Advances, 2019, 9, 7870-7877.	3.6	18
216	Fabrication of Riceâ€Like Porous Anatase TiO ₂ with High Thermal Stability and Enhanced Photocatalytic Performance. ChemCatChem, 2012, 4, 844-850.	3.7	17

#	Article	IF	CITATIONS
217	Single-crystalline Bi ₁₉ Br ₃ S ₂₇ nanorods with an efficiently improved photocatalytic activity. CrystEngComm, 2015, 17, 6120-6126.	2.6	17
218	In situ synthesis and high adsorption performance of MoO ₂ /MoS ₂ composite nanorods by reduction of MoO ₃ . Dalton Transactions, 2015, 44, 6224-6228.	3.3	17
219	Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor. Russian Journal of Electrochemistry, 2019, 55, 242-246.	0.9	17
220	NiS/Pt nanoparticles co-decorated black mesoporous TiO2 hollow nanotube assemblies as efficient hydrogen evolution photocatalysts. Applied Materials Today, 2021, 22, 100977.	4.3	17
221	Bi2S3@Ag2S nano-heterojunction decorated self-floating carbon fiber cloth and enhanced solar-driven photothermal-photocatalytic performance. Chemosphere, 2021, 271, 129500.	8.2	17
222	UiO-66-NH ₂ Octahedral Nanocrystals Decorated with ZnFe ₂ O ₄ Nanoparticles for Photocatalytic Alcohol Oxidation. ACS Applied Nano Materials, 2022, 5, 2231-2240.	5.0	17
223	Enhanced photocatalytic activity and upconversion luminescence of flowerlike hierarchical Bi ₂ MoO ₆ microspheres by Er ³⁺ doping. Journal of Materials Research, 2012, 27, 1471-1475.	2.6	16
224	Fe ₃ W ₃ C/WC/Graphitic Carbon Ternary Nanojunction Hybrids for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 726-733.	6.8	16
225	Earth-rich Ni2P/Ni(PO3)2 co-catalysts promoted electron–hole separation for g-C3N4 nanosheets visible light photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 160-167.	5.3	16
226	Novel AgCl nanotubes/BiOCl nanosheets composite with improved adsorption capacity and photocatalytic performance. Journal of Alloys and Compounds, 2019, 773, 1146-1153.	5.5	16
227	Heterojunction Ag–TiO ₂ Nanopillars for Visibleâ€Lightâ€Driven Photocatalytic H ₂ Production. ChemPlusChem, 2014, 79, 995-1000.	2.8	15
228	In-situ Ti3+/S doped high thermostable anatase TiO2 nanorods as efficient visible-light-driven photocatalysts. Materials Chemistry and Physics, 2018, 219, 303-310.	4.0	15
229	Surface domain heterojunction on rutile TiO ₂ for highly efficient photocatalytic hydrogen evolution. Nanoscale Horizons, 2020, 5, 1596-1602.	8.0	15
230	Hollow core–shell Co ₉ S ₈ @In ₂ S ₃ nanotube heterojunctions toward optimized photothermal–photocatalytic performance. Catalysis Science and Technology, 2021, 11, 7412-7419.	4.1	15
231	Anatase TiO2 pillar–nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Transactions, 2012, 41, 12683.	3.3	14
232	Vertically aligned anatase TiO2 nanowire bundle arrays: Use as Pt support forÂcounter electrodes in dye-sensitized solar cells. Journal of Power Sources, 2013, 238, 350-355.	7.8	14
233	Fabrication of noncovalently functionalized brick-like \hat{l}^2 -cyclodextrins/graphene composite dispersions with favorable stability. RSC Advances, 2014, 4, 2813-2819.	3.6	14
234	A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1813-1820.	3.4	14

#	Article	IF	CITATIONS
235	Surface-oxygen vacancy defect-promoted electron-hole separation of defective tungsten trioxide ultrathin nanosheets and their enhanced solar-driven photocatalytic performance. Journal of Colloid and Interface Science, 2019, 557, 18-27.	9.4	14
236	Polydopamine/defective ultrathin mesoporous graphitic carbon nitride nanosheets as Z-scheme organic assembly for robust photothermal-photocatalytic performance. Journal of Colloid and Interface Science, 2022, 613, 775-785.	9.4	14
237	Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2022, 626, 879-888.	9.4	14
238	Confinement Effect on Ag Clusters in the Channels of Wellâ€Ordered Mesoporous TiO ₂ and their Enhanced Photocatalytic Performance. ChemCatChem, 2013, 5, 1354-1358.	3.7	13
239	Bifunctional nest-like self-floating microreactor for enhanced photothermal catalysis and biocatalysis. Environmental Science: Nano, 2019, 6, 3551-3559.	4.3	13
240	3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy and Environment, 2023, 8, 200-212.	8.7	13
241	Dyeâ€Sensitised Solar Cells Based on Largeâ€Pore Mesoporous TiO ₂ with Controllable Pore Diameters. European Journal of Inorganic Chemistry, 2011, 2011, 4730-4737.	2.0	12
242	A New Combustion Route to Synthesize Mixed Valence Vanadium Oxide Heterojunction Composites as Visibleâ€Lightâ€Driven Photocatalysts. ChemCatChem, 2014, 6, 2553-2559.	3.7	12
243	High Catalytic Activity of W ₁₈ O ₄₉ Nanowire-Reduced Graphite Oxide Composite Counter Electrode for Dye-Sensitized Solar Cells. ChemistrySelect, 2017, 2, 8927-8935.	1.5	12
244	Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors. Bulletin of Materials Science, 2018, 41, 1.	1.7	11
245	Facet-Dependent SnS Nanocrystals as the High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 14353-14360.	6.7	11
246	Hollow core-shell Z-scheme heterojunction on self-floating carbon fiber cloth with robust photocatalytic-photothermal performance. Journal of Cleaner Production, 2022, 360, 132166.	9.3	11
247	Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation. Materials Research Bulletin, 2014, 49, 480-486.	5. 2	10
248	3 D Interlayer Nanohybrids Composed of Sulfamicâ€Acidâ€Doped PEdot Grown on Expanded Graphite for Highâ€Performance Supercapacitors. ChemPlusChem, 2016, 81, 242-250.	2.8	10
249	Assembly of surface-defect single-crystalline strontium titanate nanocubes acting as molecular bricks onto surface-defect single-crystalline titanium dioxide (B) nanorods for efficient visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2019, 537, 441-449.	9.4	10
250	Self-floating biomass charcoal supported flower-like plasmon silver/carbon, nitrogen co-doped defective TiO2 as robust visible light photocatalysts. Journal of Cleaner Production, 2021, 329, 129723.	9.3	10
251	The effective strategies of preparing black F-Tilll-codoping TiO2 anchored on sepiolite for enhanced photodegradation. Applied Clay Science, 2021, 209, 106116.	5.2	9
252	Regulating the surface state of Znln ₂ S ₄ by gamma-ray irradiation for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 927-934.	4.1	9

#	Article	IF	CITATIONS
253	Heteroatom-induced domain electrostatic potential difference in Znln ₂ S ₄ nanosheets for efficient charge separation and boosted photocatalytic overall water splitting. Materials Chemistry Frontiers, 2022, 6, 1795-1802.	5.9	8
254	Review of some recent progress on materials science researches in China. Science China Chemistry, 2012, 55, 2497-2502.	8.2	7
255	Pt loaded onto silicon carbide/porous carbon hybrids as an electrocatalyst in the methanol oxidation reaction. RSC Advances, 2014, 4, 51272-51279.	3.6	7
256	Promoted spatial charge separation of plasmon Ag and co-catalyst Co <i> _x </i> P decorated mesoporous g-C ₃ N ₄ nanosheet assembly for unexpected solar-driven photocatalytic performance. Nanotechnology, 2019, 30, 485401.	2.6	7
257	Surface domain potential difference-mediated efficient charge separation on a defective Znln2S4 microsphere photocatalyst. Materials Today Chemistry, 2022, 23, 100714.	3.5	7
258	Nanocrystalline tungstic carbide/graphitic carbon composite: synthesis, characterization, and its application as an effective Pt catalyst support for methanol oxidation. Journal of Solid State Electrochemistry, 2014, 18, 2225-2232.	2.5	6
259	A versatile salicylic acid precursor method for preparing titanate microspheres. Science China Materials, 2015, 58, 106-113.	6.3	6
260	Multifunctional (Fe0.5Ni0.5)S2 nanocrystal catalysts with high catalytic activities for reduction of I3â^' and electrochemical water splitting. Research on Chemical Intermediates, 2018, 44, 4307-4322.	2.7	6
261	Effect of yttrium on the wave absorption properties of Fe95Si1B2P0.5Cu1.5 alloy powders in the S-band and C-band. Journal of Magnetism and Magnetic Materials, 2021, 538, 168250.	2.3	6
262	Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1474.	4.1	5
263	Ag/polydopamine nanoparticles co-decorated defective mesoporous carbon nitride nanosheets assemblies for wide spectrum response and robust photothermal-photocatalytic performance. Applied Surface Science, 2022, 598, 153895.	6.1	5
264	Nickel nanocrystals grown on sparse hierarchical CuS microflowers as high-performance counter electrodes for dye-sensitized solar cells. Functional Materials Letters, 2016, 09, 1650056.	1.2	4
265	Core–shell carbon colloid sphere@phosphotungstic acid/CdS as a Z-scheme heterojunction with synergistic adsorption, photothermal and photocatalytic performance. Catalysis Science and Technology, 2021, 11, 6080-6088.	4.1	4
266	The sandwich structure electrodes based on wire-like TiO2â€"β-cyclodextrinâ€"SWCNT composite for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 306-310.	3.9	3
267	High Thermally Stable Mesoporous WO ₃ /TiO ₂ Heterojunction as a High-Efficient Simulated Solar-Light Photocatalyst. Advanced Porous Materials, 2013, 1, 262-270.	0.3	3
268	Synergy of $\langle I \rangle \hat{I}^2 \langle I \rangle$ -Cyclodextrins and Carbon Nanotubes Induced Low-Temperature Preparation of Phase-Pure Rutile TiO $\langle SUB \rangle 2 \langle SUB \rangle$ Nanocrystals. Science of Advanced Materials, 2009, 1, 182-185.	0.7	3
269	Controlled synthesis and luminescence properties of NaLnW2O8 nanocrystals. Journal of Alloys and Compounds, 2012, 514, 157-162.	5.5	2
270	Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure. Nanomaterials, 2022, 12, 1409.	4.1	2

ARTICLE IF CITATIONS

271 Plasmon-sensitized TiO2 nanomaterials as visible light photocatalysts., 2020,, 143-174.