Yue-Min Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744785/publications.pdf

Version: 2024-02-01

471509 580821 1,231 25 17 25 citations h-index g-index papers 26 26 26 1771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.	19.5	63
2	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells (Adv. Energy Mater. 2/2022). Advanced Energy Materials, 2022, 12, 2270004.	19.5	1
3	Homogeneous Grain Boundary Passivation in Wideâ€Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	42
4	Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties. Journal of Energy Chemistry, 2022, 71, 12-19.	12.9	12
5	Subtle side chain modification of triphenylamineâ€based polymer holeâ€transport layer materials produces efficient and stable inverted perovskite solar cells. , 2022, 1, 281-293.		34
6	Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.	14.9	66
7	D-A-Ï€-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells. Joule, 2021, 5, 249-269.	24.0	203
8	Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. Advanced Energy Materials, 2021, 11, 2100784.	19.5	35
9	Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano Select, 2021, 2, 1266-1276.	3.7	18
10	FAâ€Assistant Iodide Coordination in Organic–Inorganic Wideâ€Bandgap Perovskite with Mixed Halides. Small, 2020, 16, e1907226.	10.0	38
11	Synergistic Effect of Pseudo-Halide Thiocyanate Anion and Cesium Cation on Realizing High-Performance Pinhole-Free MA-Based Wide-Band Gap Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 25909-25916.	8.0	23
12	Improving the conductivity of sol–gel derived NiO _x with a mixed oxide composite to realize over 80% fill factor in inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 9578-9586.	10.3	47
13	Porous and Intercrossed PbI ₂ –CsI Nanorod Scaffold for Inverted Planar FA–Cs Mixed-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 6126-6135.	8.0	32
14	Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy, 2019, 61, 496-504.	16.0	92
15	The Role of Diammonium Cation on the Structural and Optoelectronic Properties in 3D Cesium–Formamidinium Mixedâ€Cation Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900140.	5.8	16
16	Charge transfer-induced photoluminescence in ZnO nanoparticles. Nanoscale, 2019, 11, 8736-8743.	5.6	48
17	Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Research, 2019, 12, 1033-1039.	10.4	37
18	Direct observation of cation-exchange in liquid-to-solid phase transformation in $FA1a^2xMAxPbI3 based perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9081-9088.$	10.3	35

#	Article	IF	CITATION
19	Solution processable small molecule based organic light-emitting devices prepared by dip-coating method. Organic Electronics, 2018, 55, 1-5.	2.6	12
20	Air-processed mixed-cation Cs _{0.15} FA _{0.85} Pbl ₃ planar perovskite solar cells derived from a Pbl ₂ –Csl–FAI intermediate complex. Journal of Materials Chemistry A, 2018, 6, 7731-7740.	10.3	75
21	Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of Materials Chemistry C, 2018, 6, 9111-9118.	5.5	67
22	Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360, 157-165.	7.8	106
23	18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar Rrl, 2017, 1, 1700097.	5.8	97
24	High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives. Organic Electronics, 2015, 26, 25-29.	2.6	9
25	Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host material via a direct carbon–nitrogen bond. Journal of Materials Chemistry C, 2015, 3, 5347-5353.	5.5	15