Dongchan D Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743399/publications.pdf Version: 2024-02-01

ΠΟΝΟCHAN D ΙΑΝΟ

#	Article	IF	CITATIONS
1	Interfacial plasticity mediated by lath boundaries in reduced-activation ferritic/martensitic steels. Journal of Nuclear Materials, 2022, 559, 153439.	2.7	4
2	Dissolution of nanosized NbC precipitates in austenite matrix during elastic deformation - Deleterious effect of high number density. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142506.	5.6	3
3	Deformation mechanism of embedded hydride within the polycrystalline zirconium matrix. Journal of Nuclear Materials, 2022, 565, 153736.	2.7	7
4	"Effect of proton irradiation on δferrite in the thermally aged austenitic stainless steel weld: Precipitation of G-phase and additional hardening― Journal of Nuclear Materials, 2021, 544, 152656.	2.7	8
5	Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials <i>via</i> Proximity-Field Nanopatterning. ACS Nano, 2021, 15, 3960-3970.	14.6	11
6	Flexible Protective Film: Ultrahard, Yet Flexible Hybrid Nanocomposite Reinforced by 3D Inorganic Nanoshell Structures. Advanced Functional Materials, 2021, 31, 2010254.	14.9	19
7	Dynamic evolution of nanosized NbC precipitates in austenite matrix during deformation and its contribution to strengthening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140816.	5.6	13
8	Friction Control by Deformation Mode in Nanopatterned Amorphous Carbon. Nano Letters, 2021, 21, 107-113.	9.1	5
9	Parametric study on the structural response of a high burnup spent nuclear fuel rod under drop impact considering post-irradiated fuel conditions. Nuclear Engineering and Technology, 2020, 52, 1079-1092.	2.3	7
10	Crack-tip plasticity and intrinsic toughening in nano-sized brittle amorphous carbon. International Journal of Plasticity, 2020, 127, 102642.	8.8	9
11	MEMS-based in-situ tensile experiments designed to arrest catastrophic failure in brittle nanomaterials. Extreme Mechanics Letters, 2020, 41, 101071.	4.1	3
12	Stabilized Amorphous Calcium Carbonate as a Precursor of Microcoating on Calcite. Materials, 2020, 13, 3762.	2.9	7
13	Evaluation of thermal ageing activation energy of δ-ferrite in an austenitic stainless steel weld using nanopillar compression test. Scripta Materialia, 2020, 186, 236-241.	5.2	12
14	Plastic deformation of bi-crystalline Zr-ZrH2. Journal of Nuclear Materials, 2020, 533, 152111.	2.7	3
15	Microstructural Evolution of Al–Zn–Mg–Cu Alloys in Accordance with Homogenization Time. Journal of Nanoscience and Nanotechnology, 2020, 20, 6890-6896.	0.9	1
16	Ductilization of Nanoporous Ceramics by Crystallinity Control. Nano Letters, 2019, 19, 8488-8494.	9.1	2
17	Characterization of Plastic Deformation in Lath Martensitic Steel by Micro-pillar Compression Focused on Sub-block and Lath Boundaries. Jom, 2019, 71, 3536-3542.	1.9	1
18	Meso-scale modeling and simulation for reduced activation ferritic/martensitic steel. Fusion Engineering and Design, 2019, 146, 232-235.	1.9	1

Dongchan D Jang

#	Article	IF	CITATIONS
19	On Strength of Brittle Nanomaterials: Confinement Effect on Weibull Distributions. Frontiers in Materials, 2019, 6, .	2.4	3
20	Micropillar compression study of the influence of size and internal boundary on the strength of HT9 tempered martensitic steel. Journal of Nuclear Materials, 2018, 503, 263-270.	2.7	7
21	Transparent Urethane–Siloxane Hybrid Materials for Flexible Cover Windows with Ceramic-Like Strength, yet Polymer-Like Modulus. ACS Applied Materials & Interfaces, 2018, 10, 43122-43130.	8.0	28
22	Emergence of New Density–Strength Scaling Law in 3D Hollow Ceramic Nanoarchitectures. Small, 2018, 14, e1802239.	10.0	21
23	Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano, 2018, 12, 9126-9133.	14.6	44
24	Structural integrity of a high-burnup spent fuel rod under drop impact considering pellet-clad interfacial bonding influence. Nuclear Engineering and Design, 2018, 337, 324-340.	1.7	16
25	Grain Scale Representative Volume Element Simulation to Investigate the Effect of Crystal Orientation on Void Growth in Single and Multi-Crystals. Metals, 2018, 8, 436.	2.3	8
26	Flexible Coatings: Flexible Hard Coating: Glassâ€Like Wear Resistant, Yet Plasticâ€Like Compliant, Transparent Protective Coating for Foldable Displays (Adv. Mater. 19/2017). Advanced Materials, 2017, 29, .	21.0	5
27	Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis. Nuclear Engineering and Technology, 2017, 49, 411-425.	2.3	5
28	Flexible Hard Coating: Glassâ€Like Wear Resistant, Yet Plasticâ€Like Compliant, Transparent Protective Coating for Foldable Displays. Advanced Materials, 2017, 29, 1700205.	21.0	107
29	Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage. Nuclear Engineering and Design, 2017, 311, 104-119.	1.7	10
30	Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses. Scientific Reports, 2016, 6, 23244.	3.3	11
31	Nanosized Nanocrystalline and Nanotwinned Metals. , 2016, , 2704-2712.		0
32	Grain Boundary Sliding in Aluminum Nanoâ€Biâ€Crystals Deformed at Room Temperature. Small, 2014, 10, 100-108.	10.0	30
33	Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation. Applied Physics Letters, 2014, 105, 011907.	3.3	35
34	Nanometallic Glasses: Size Reduction Brings Ductility, Surface State Drives Its Extent. Nano Letters, 2013, 13, 4462-4468.	9.1	112
35	Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Materials, 2013, 12, 893-898.	27.5	423
36	Fatigue deformation of microsized metallic glasses. Scripta Materialia, 2013, 68, 773-776.	5.2	32

#	Article	IF	CITATIONS
37	Nanomedicine. , 2012, , 1644-1644.		Ο
38	Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.		0
39	Nano-FET. , 2012, , 1543-1543.		0
40	Exploring Deformation Mechanisms in Nanostructured Materials. Jom, 2012, 64, 1241-1252.	1.9	33
41	Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnology, 2012, 7, 594-601.	31.5	385
42	Crystallographic orientation and size dependence of tension–compression asymmetry in molybdenum nano-pillars. International Journal of Plasticity, 2012, 28, 46-52.	8.8	86
43	Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 89-97.	5.6	31
44	Catastrophic vs Gradual Collapse of Thin-Walled Nanocrystalline Ni Hollow Cylinders As Building Blocks of Microlattice Structures. Nano Letters, 2011, 11, 4118-4125.	9.1	34
45	Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scripta Materialia, 2011, 64, 77-80.	5.2	174
46	Influence of Homogeneous Interfaces on the Strength of 500 nm Diameter Cu Nanopillars. Nano Letters, 2011, 11, 1743-1746.	9.1	93
47	Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. International Journal of Plasticity, 2011, 27, 858-867.	8.8	141
48	Nanolaminates Utilizing Sizeâ€Dependent Homogeneous Plasticity of Metallic Glasses. Advanced Functional Materials, 2011, 21, 4550-4554.	14.9	143
49	An atomically quantized hierarchy of shear transformation zones in a metallic glass. Journal of Applied Physics, 2011, 109, .	2.5	97
50	Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Materialia, 2010, 58, 2355-2363.	7.9	299
51	Transition from a strong-yet-brittle to aÂstronger-and-ductile state by size reductionÂofÂmetallicAglasses. Nature Materials, 2010, 9, 215-219.	27.5	606
52	Nano-Electro-Mechanical Switches Derived from Carbon-Based Nanomaterials. Nanoscience and Nanotechnology Letters, 2010, 2, 163-169.	0.4	1
53	Carbon-based nano-electro-mechanical systems. Proceedings of SPIE, 2010, , .	0.8	0
54	Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scripta Materialia, 2009, 61, 300-303.	5.2	108

Dongchan D Jang

#	Article	IF	CITATIONS
55	Emergence of New Mechanical Functionality in Materials via Size Reduction. Advanced Functional Materials, 2009, 19, 2880-2886.	14.9	39
56	Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. Journal of Applied Physics, 2006, 99, 083504.	2.5	57
57	The Contribution of Grain-Boundary Activity to Plasticity in Nanocrystalline Fe - The Effect of Grain-Boundary Relaxation. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 555-558.	0.1	Ο
58	Grain-size dependence of plastic deformation in nanocrystalline Fe. Journal of Applied Physics, 2003, 93, 9282-9286.	2.5	80
59	Evaluation of Thermal Ageing Activation Energy of Δ-Ferrite in an Austenitic Stainless Steel Weld Using Nanopillar Compression Test. SSRN Electronic Journal, 0, , .	0.4	Ο
60	Multiomics characterization of dose- and time-dependent effects of ionizing radiation on human skin keratinocytes. Korean Journal of Chemical Engineering, 0, , 1.	2.7	2