Masafumi Imai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743120/publications.pdf Version: 2024-02-01

MASAFILMI IMAL

#	Article	IF	CITATIONS
1	Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 2018, 558, 87-90.	27.8	52
2	Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 2017, 44, 4439-4446.	4.0	38
3	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	2.4	37
4	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	4.0	35
5	Waveâ€Particle Interactions Associated With Io's Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes. Geophysical Research Letters, 2020, 47, e2020GL088432.	4.0	34
6	THE BEAMING STRUCTURES OF JUPITER'S DECAMETRIC COMMON S-BURSTS OBSERVED FROM THE LWA1, NDA, AND URAN2 RADIO TELESCOPES. Astrophysical Journal, 2016, 826, 176.	4.5	32
7	Plasma waves in Jupiter's highâ€latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4447-4454.	4.0	27
8	Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2018, 2, 544-548.	10.1	27
9	Alfvénic Acceleration Sustains Ganymede's Footprint Tail Aurora. Geophysical Research Letters, 2020, 47, e2019GL086527.	4.0	25
10	loâ€Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations. Geophysical Research Letters, 2017, 44, 9225-9232.	4.0	22
11	Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes. Geophysical Research Letters, 2018, 45, 9408-9416.	4.0	19
12	Angular beaming model of Jupiter's decametric radio emissions based on Cassini RPWS data analysis. Geophysical Research Letters, 2008, 35, .	4.0	18
13	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	4.0	18
14	Proton Acceleration by Io's Alfvénic Interaction. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027314.	2.4	18
15	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	4.0	17
16	Energetic Proton Acceleration Associated With Io's Footprint Tail. Geophysical Research Letters, 2020, 47, e2020GL090839.	4.0	16
17	Comparison between Cassini and Voyager observations of Jupiter's decametric and hectometric radio emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	15
18	Jovian Auroral Radio Sources Detected In Situ by Juno/Waves: Comparisons With Model Auroral Ovals and Simultaneous HST FUV Images. Geophysical Research Letters, 2019, 46, 11606-11614.	4.0	15

Masafumi Imai

#	Article	IF	CITATIONS
19	Directionâ€finding measurements of Jovian lowâ€frequency radio components by Juno near Perijove 1. Geophysical Research Letters, 2017, 44, 6508-6516.	4.0	14
20	<i>Bar Code</i> Events in the Junoâ€UVS Data: Signature â^¼10ÂMeV Electron Microbursts at Jupiter. Geophysical Research Letters, 2018, 45, 12,108.	4.0	14
21	Juno Plasma Wave Observations at Ganymede. Geophysical Research Letters, 2022, 49, .	4.0	13
22	lo's Effect on Energetic Charged Particles as Seen in Juno Data. Geophysical Research Letters, 2019, 46, 13615-13620.	4.0	12
23	A Coherent Method for Simulating Active and Passive Radar Sounding of the Jovian Icy Moons. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2250-2265.	6.3	12
24	Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array. Geophysical Research Letters, 2017, 44, 4455-4462.	4.0	11
25	Jupiter Lightningâ€Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves. Geophysical Research Letters, 2018, 45, 7268-7276.	4.0	11
26	Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno. Geophysical Research Letters, 2019, 46, 571-579.	4.0	10
27	Lowâ€Latitude Whistlerâ€Mode and Higherâ€Latitude Zâ€Mode Emission at Jupiter Observed by Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028742.	2.4	10
28	Probing Jovian decametric emission with the long wavelength array station 1. Journal of Geophysical Research: Space Physics, 2014, 119, 9508-9526.	2.4	9
29	Modeling Jovian hectometric attenuation lanes during the Cassini flyby of Jupiter. Journal of Geophysical Research: Space Physics, 2015, 120, 1888-1907.	2.4	9
30	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	4.0	8
31	Statistical study of latitudinal beaming of Jupiter's decametric radio emissions using Juno. Geophysical Research Letters, 2017, 44, 4584-4590.	4.0	7
32	Analysis of Whistlerâ€Mode and Zâ€Mode Emission in the Juno Primary Mission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029885.	2.4	5
33	Evidence for low density holes in Jupiter's ionosphere. Nature Communications, 2019, 10, 2751.	12.8	4
34	Juno Reveals New Insights Into Ioâ€Related Decameter Radio Emissions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006415.	3.6	4
35	Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter's Middle and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
36	Highâ€Spatiotemporal Resolution Observations of Jupiter Lightningâ€Induced Radio Pulses Associated With Sferics and Thunderstorms. Geophysical Research Letters, 2020, 47, e2020GL088397.	4.0	3

MASAFUMI IMAI

#	Article	IF	Citations
37	Jupiter's Decametric and Hectometric Radio Emissions Observed by Cassini RPWS and Voyager PRA. , 0, , .		3
38	Simultaneous UV Images and High‣atitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	2.4	3
39	Multi-antenna observations in the low-frequency radio astronomy of solar system objects and related topics studies. , 0, , .		1
40	Concurrent Jovian Sâ€Burst Beaming as Observed From LWA1, NDA, and Ukrainian Radio Telescopes. Journal of Geophysical Research: Space Physics, 2019, 124, 5302-5316.	2.4	0
41	A Model of Jupiter's Decametric Radio Emissions as a Searchlight Beam. , 0, , .		0
42	First observations near Jupiter by the Juno Waves investigation. , 0, , .		0
43	Jovian decametric emission with the Long Wavelength Array station 1 (LWA1). , 0, , .		0
44	Jupiter's Io-C and Io-B decametric emission source morphology from LWA1 data analysis. , 0, , .		0
45	Morphology of the Jupiter Io-D decametric radio source. , 0, , .		0
46	Analysis of Jovian low-frequency radio emissions based on stereoscopic observations with Juno and Earth-based radio telescopes. , 0, , .		0