
Ivonne Hernandez Schulman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743048/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transplantation Mediates Much of the Racial Disparity in Survival from Childhood-Onset Kidney Failure. Journal of the American Society of Nephrology: JASN, 2022, 33, 1265-1275.	6.1	10
2	Abacavir antiretroviral therapy and indices of subclinical vascular disease in persons with HIV. PLoS ONE, 2022, 17, e0264445.	2.5	2
3	Optimizing the Design and Analysis of Future AKI Trials. Journal of the American Society of Nephrology: JASN, 2022, 33, 1459-1470.	6.1	17
4	The role of mesenchymal stem/stromal cells in the acute clinical setting. American Journal of Emergency Medicine, 2021, 46, 572-578.	1.6	9
5	Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
6	Demographic representation in clinical trials for cell-based therapy. Contemporary Clinical Trials Communications, 2021, 21, 100702.	1.1	8
7	US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 2021, 77, A7-A8.	1.9	325
8	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
9	The Interdisciplinary Stem Cell Institute's Use of Food and Drug Administration-Expanded Access Guidelines to Provide Experimental Cell Therapy to Patients With Rare Serious Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 675738.	3.7	1
10	The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovascular Research, 2020, 116, 2131-2141.	3.8	10
11	Abstract 471: Combination of Allogeneic Mesenchymal and Kidney Stem Cells Ameliorates Chronic Kidney Disease Induced Heart Failure With Preserved Ejection Fraction. Circulation Research, 2020, 127,	4.5	0
12	VASCULAR ENDOTHELIAL FUNCTION AND ARTERIAL STIFFNESS IN HIV-INFECTED PATIENTS WITH AND WITHOUT ABACAVIR REGIMEN. Journal of the American College of Cardiology, 2019, 73, 1870.	2.8	0
13	Stem Cell Therapies for Renal Diseases. , 2019, , 127-127.		0
14	A metaâ€analysis of arrhythmia endpoints in randomized controlled trials of transendocardial stem cell injections for chronic ischemic heart disease. Journal of Cardiovascular Electrophysiology, 2019, 30, 2492-2500.	1.7	3
15	Mesenchymal Stem Cell Secretion of SDF-1α Modulates Endothelial Function in Dilated Cardiomyopathy. Frontiers in Physiology, 2019, 10, 1182.	2.8	20
16	Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2019, 3, 1-13.	2.4	68
17	Mesenchymal Stromal Cells as a Therapeutic Intervention. , 2019, , .		0
18	Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine, 2019, 48, 377-385.	6.1	20

#	Article	IF	CITATIONS
19	Rescue therapy for hypercapnia due to high PEEP mechanical ventilation in patients with ARDS and renal failure. Artificial Organs, 2019, 43, 599-604.	1.9	8
20	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQ	q0 0 0 <u>6 r</u> gBT	/Overlock 10
21	Have We Been Measuring the Wrong Form of Vitamin D?. Circulation Research, 2018, 123, 934-935.	4.5	5
22	Mesenchymal Stem Cell Therapy for Aging Frailty. Frontiers in Nutrition, 2018, 5, 108.	3.7	38
23	Interdisciplinary Stem Cell Institute at the University of Miami Miller School of Medicine. Circulation Research, 2018, 123, 1030-1032.	4.5	3
24	Unique Aspects of the Design of Phase I/II Clinical Trials of Stem Cell Therapy. , 2018, , .		3
25	Predictive Value of Circulating Progenitor Cells in Acute Coronary Syndrome. Circulation Research, 2018, 122, 1491-1493.	4.5	2
26	Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	3.7	29
27	Abstract 215: Induced Pluripotent Stem Cell-Derived Cardiomyocyte Proliferation is Enhanced by Co-culture With Female Mesenchymal Stem Cells. Circulation Research, 2018, 123, .	4.5	Ο
28	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46
29	Allogeneic Human Mesenchymal Stem Cell Infusions for Aging Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1505-1512.	3.6	71
30	Do Males and Females with Non-Ischemic Dilated Cardiomyopathy Respond Similarly to Stem Cell Therapy? an Analysis From the POSEIDON-DCM Trial. Journal of Cardiac Failure, 2017, 23, S66.	1.7	0
31	Phenotype of Super-Responders to Stem Cell Therapy for Non-Ischemic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2017, 23, S90.	1.7	Ο
32	Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1513-1522.	3.6	107
33	Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential. Scientific Reports, 2017, 7, 9702.	3.3	5
34	Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study). Circulation Research, 2017, 121, 1279-1290.	4.5	152
35	A Combination of Allogeneic Stem Cells Promotes Cardiac Regeneration. Journal of the American College of Cardiology, 2017, 70, 2504-2515.	2.8	76
36	Ischemic vs. Non-Ischemic Dilated Cardiomyopathy: a Comparative Study in Stem Cell Therapy Efficacy. Journal of Molecular and Cellular Cardiology, 2017, 112, 160.	1.9	0

#	Article	IF	CITATIONS
37	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
38	Insights Into Signaling in Cell-Based Therapy for Heart Disease. Signal Transduction Insights, 2017, 6, 117864341771768.	2.0	0
39	Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. , 2017, , 313-338.		8
40	Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty. , 2017, , .		1
41	Abstract 215: Allogeneic MSCs Improve Endothelial Function in Patients with Dilated Cardiomyopathy via an SDF-11±-mediated Mechanism and the Suppression of Pathologic Cytokines. Circulation Research, 2017, 121, .	4.5	0
42	Physiological and hypoxic oxygen concentration differentially regulates human c-Kit ⁺ cardiac stem cell proliferation and migration. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1509-H1519.	3.2	20
43	Tele-Nephrology: A Feasible Way to Improve Access to Care for Patients with Kidney Disease Who Reside in Underserved Areas. Telemedicine Journal and E-Health, 2016, 22, 650-654.	2.8	19
44	Cell Therapy Augments Myocardial Perfusion and Improves Quality of Life in Patients With Refractory Angina. Circulation Research, 2016, 118, 911-915.	4.5	3
45	Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Translational Medicine, 2016, 5, 186-191.	3.3	109
46	Allogeneic versus Autologous Source. , 2016, , 151-168.		0
47	Rationale and design of the allogeneiC human mesenchymal stem cells (hMSC) in patients with aging fRAilTy via intravenoUS delivery (CRATUS) study: A phase I/II, randomized, blinded and placebo controlled trial to evaluate the safety and potential efficacy of allogeneic human mesenchymal stem cell infusion in patients with aging frailty. Oncotarget, 2016, 7, 11899-11912.	1.8	37
48	Is the regulation of SIRT1 by miRNA-34a the key to mesenchymal stem cell survival?. Annals of Translational Medicine, 2016, 4, 243-243.	1.7	3
49	Allogeneic Alternatives to Autologous Bone Marrow. , 2016, , 181-192.		Ο
50	Allogeneic Alternatives to Autologous Bone Marrow. , 2016, , 169-179.		0
51	Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. Journal of the American College of Cardiology, 2015, 66, 1990-1999.	2.8	133
52	Clinical Research Skills Development Program in Cell-Based Regenerative Medicine. Stem Cells Translational Medicine, 2015, 4, 118-122.	3.3	12
53	Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine, 2015, 2, 467-475.	6.1	111
54	Allogeneic Cell Therapy. Circulation Research, 2015, 116, 12-15.	4.5	86

#	Article	IF	CITATIONS
55	Does Transendocardial Injection of Mesenchymal Stem Cells Improve Myocardial Function Locally or Globally?. Circulation Research, 2014, 114, 1292-1301.	4.5	115
56	Detailed Analysis of Bone Marrow From Patients With Ischemic Heart Disease and Left Ventricular Dysfunction. Circulation Research, 2014, 115, 867-874.	4.5	65
57	Bone Marrow Mononuclear Cell Therapy for Acute Myocardial Infarction. Circulation Research, 2014, 114, 1564-1568.	4.5	45
58	Nitroso-Redox Imbalance Affects Cardiac Structure and Function. Journal of the American College of Cardiology, 2013, 61, 933-935.	2.8	15
59	The Advancing Field of Cellâ€Based Therapy: Insights and Lessons From Clinical Trials. Journal of the American Heart Association, 2013, 2, e000338.	3.7	81
60	Abstract 259: Role of Connexin 43 in Human Bone Marrow Derived Mesenchymal Stem Cell Cardiac Integration and Cardiac Stem cell Niche Formation Circulation Research, 2013, 113, .	4.5	2
61	Concise Review: The Role of Clinical Trials in Deciphering Mechanisms of Action of Cardiac Cell-Based Therapy. Stem Cells Translational Medicine, 2012, 1, 29-35.	3.3	30
62	Dynamic denitrosylation via <i>S</i> -nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4314-4319.	7.1	122
63	Wnt signalling: a mediator of the heart-bone marrow axis after myocardial injury?. European Heart Journal, 2012, 33, 1861-1863.	2.2	4
64	Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease. Vascular Medicine, 2012, 17, 330-341.	1.5	134
65	Cell-based therapy for prevention and reversal of myocardial remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H256-H270.	3.2	81
66	Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. JAMA - Journal of the American Medical Association, 2012, 308, 2369.	7.4	1,017
67	Regulation of cardiovascular cellular processes by S-nitrosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 752-762.	2.4	46
68	Key developments in stem cell therapy in cardiology. Regenerative Medicine, 2012, 7, 17-24.	1.7	51
69	Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 51, 619-625.	1.9	40
70	S-Glutathionylation: A Redox-Sensitive Switch Participating in Nitroso-Redox Balance. Circulation Research, 2011, 108, 531-533.	4.5	15
71	Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation. Journal of Hypertension, 2010, 28, 527-535.	0.5	89
72	Renovascular and renoprotective properties of telmisartan: clinical utility. International Journal of Nephrology and Renovascular Disease, 2010, 3, 33.	1.8	6

#	Article	IF	CITATIONS
73	Role of c-Jun N-terminal Kinase in the Regulation of Vascular Tone. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 15, 78-83.	2.0	17
74	Altered Renal Expression of Angiotensin II Receptors, Renin Receptor, and ACE-2 Precede the Development of Renal Fibrosis in Aging Rats. American Journal of Nephrology, 2010, 32, 249-261.	3.1	40
75	Prevention of diabetes in hypertensive patients: Results and implications from the VALUE trial. Vascular Health and Risk Management, 2009, 5, 361.	2.3	20
76	Role of angiotensin II and oxidative stress in vascular insulin resistance linked to hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H833-H839.	3.2	49
77	Vascular insulin resistance: A potential link between cardiovascular and metabolic diseases. Current Hypertension Reports, 2009, 11, 48-55.	3.5	83
78	The angiotensin II type 2 receptor: What is its clinical significance?. Current Hypertension Reports, 2008, 10, 188-193.	3.5	32
79	7: Unusual Presentation of Focal Segmental Glomerulosclerosis with Acute Renal Failure. American Journal of Kidney Diseases, 2008, 51, B29.	1.9	0
80	129: Acute and Reversible Vancomycin Nephrotoxicity: A Case Series. American Journal of Kidney Diseases, 2008, 51, B60.	1.9	0
81	Thiazide diuretics, endothelial function, and vascular oxidative stress. Journal of Hypertension, 2008, 26, 494-500.	0.5	62
82	Cross-Talk Between Angiotensin II Receptor Types 1 and 2. Hypertension, 2007, 49, 270-271.	2.7	27
83	Dissociation between metabolic and vascular insulin resistance in aging. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H853-H859.	3.2	28
84	Renal protection: Are all antihypertensive drugs comparable?. Current Hypertension Reports, 2007, 9, 373-379.	3.5	5
85	Salt Sensitivity and Hypertension after Menopause: Role of Nitric Oxide and Angiotensin II. American Journal of Nephrology, 2006, 26, 170-180.	3.1	52
86	Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension. Journal of Hypertension, 2006, 24, S45-S50.	0.5	76
87	Surgical Menopause Increases Salt Sensitivity of Blood Pressure. Hypertension, 2006, 47, 1168-1174.	2.7	100
88	Response to Surgical Menopause, Salt Sensitivity, and NO Bioavailability in Women. Hypertension, 2006, 48, .	2.7	0
89	Reduced NAD(P)H Oxidase in Low Renin Hypertension. Hypertension, 2006, 47, 81-86.	2.7	94
90	Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis. Current Hypertension Reports, 2005, 7, 61-67.	3.5	49

#	Article	IF	CITATIONS
91	Factors associated with poor outcomes in patients with lupus nephritis. Lupus, 2005, 14, 890-895.	1.6	165
92	Autocrine Activation of the Local Insulin-Like Growth Factor I System Is Up-Regulated by Estrogen Receptor (ER)-Independent Estrogen Actions and Accounts for Decreased ER Expression in Type 2 Diabetic Mesangial Cells. Endocrinology, 2005, 146, 889-900.	2.8	37
93	Calcium channel blockers, endothelial dysfunction, and combination therapy. Aging Clinical and Experimental Research, 2005, 17, 40-5.	2.9	18
94	Development of Albuminuria and Glomerular Lesions in Normoglycemic B6 Recipients of <i>db</i> / <i>db</i> Mice Bone Marrow. Diabetes, 2004, 53, 2420-2427.	0.6	46
95	Nitric oxide, angiotensin II, and hypertension. Seminars in Nephrology, 2004, 24, 366-378.	1.6	103
96	Resistance to Glomerulosclerosis in B6 Mice Disappears after Menopause. American Journal of Pathology, 2003, 162, 1339-1348.	3.8	77
97	Postovariectomy Hypertension Is Linked to Increased Renal AT ₁ Receptor and Salt Sensitivity. Hypertension, 2003, 42, 1157-1163.	2.7	118