C Roy D Lancaster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3742930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Respiration Respiratory Chain Complex II and Succinate: Quinone Oxidoreductases. , 2021, , 494-501.		О
2	Proton-Coupled Electron Transport in Two Distinct CYBASC Paralogs of <i>Arabidopsis thaliana</i> : A Comparative Characterization of Highly Conserved Tyrosine and Lysine Residues. Biochemistry, 2020, 59, 2328-2339.	2.5	4
3	Respiratory Chain Complex II and Succinate:Quinone Oxidoreductases. , 2018, , .		0
4	Transmembrane Electron and Proton Transfer in Diheme ontaining Succinate : Quinone Oxidoreductases. Israel Journal of Chemistry, 2017, 57, 370-380.	2.3	5
5	Structural and molecular comparison of bacterial and eukaryotic trigger factors. Scientific Reports, 2017, 7, 10680.	3.3	24
6	Structural characterization of <scp>CYP</scp> 260A1 from <i>Sorangium cellulosum</i> to investigate the 1αâ€hydroxylation of a mineralocorticoid. FEBS Letters, 2016, 590, 4638-4648.	2.8	10
7	Crystal Structure of CYP106A2 in Substrateâ€Free and Substrateâ€Bound Form. ChemBioChem, 2016, 17, 852-860.	2.6	18
8	Structure–function analysis for the hydroxylation of Δ4 C21â€steroids by the myxobacterial CYP260B1. FEBS Letters, 2016, 590, 1838-1851.	2.8	13
9	An Unconventional Anaerobic Membrane Protein Production System Based on Wolinella succinogenes. Methods in Enzymology, 2015, 556, 99-121.	1.0	0
10	Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metabolism, 2015, 22, 472-484.	16.2	307
11	Replacement of Highly Conserved E222 by the Photostable Nonâ€photoconvertible Histidine in GFP. ChemBioChem, 2014, 15, 1404-1408.	2.6	6
12	Design, Synthesis, and Biological Testing of Novel Naphthoquinones as Substrate-Based Inhibitors of the Quinol/Fumarate Reductase from <i>Wolinella succinogenes</i> . Journal of Medicinal Chemistry, 2013, 56, 9530-9541.	6.4	50
13	The di-heme family of respiratory complex II enzymes. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 679-687.	1.0	35
14	Crystallization of Membrane Proteins. Methods in Molecular Biology, 2013, 1033, 67-83.	0.9	6
15	Heterologous production and characterisation of two distinct dihaem-containing membrane integral cytochrome b561 enzymes from Arabidopsis thaliana in Pichia pastoris and Escherichia coli cells. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 679-688.	2.6	12
16	Hydrogen-Bonded Networks Along and Bifurcation of the E-Pathway in Quinol:Fumarate Reductase. Biophysical Journal, 2012, 103, 1305-1314.	0.5	8
17	The Superfamily of Succinate:Quinone Oxidoreductases and its Implications for the Cyanobacterial Enzymes. , 2011, , 469-511.		1
18	The Human Cdc37·Hsp90 Complex Studied by Heteronuclear NMR Spectroscopy. Journal of Biological Chemistry, 2009, 284, 3885-3896.	3.4	60

#	Article	IF	CITATIONS
19	Limited reversibility of transmembrane proton transfer assisting transmembrane electron transfer in a dihaem-containing succinate:quinone oxidoreductase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 593-600.	1.0	13
20	The correlation of cathodic peak potentials of vitamin K3 derivatives and their calculated electron affinities. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 601-608.	1.0	16
21	Production, characterization and determination of the real catalytic properties of the putative â€̃succinate dehydrogenase' from <i>Wolinella succinogenes</i> . Molecular Microbiology, 2009, 71, 1088-1101.	2.5	35
22	Proton transfer in the photosynthetic reaction center of <i>Blastochloris viridis</i> . FEBS Letters, 2008, 582, 238-242.	2.8	7
23	Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases. Biochemical Society Transactions, 2008, 36, 996-1000.	3.4	19
24	A Comparison of Stigmatellin Conformations, Free and Bound to the Photosynthetic Reaction Center and the Cytochrome bc1 Complex. Journal of Molecular Biology, 2007, 368, 197-208.	4.2	47
25	Recent progress on obtaining theoretical and experimental support for the "E-pathway hypothesis―of coupled transmembrane electron and proton transfer in dihaem-containing quinol:fumarate reductase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 988-995.	1.0	17
26	Experimental Evidence for Proton Motive Force-Dependent Catalysis by the Diheme-Containing Succinate:Menaquinone Oxidoreductase from the Gram-Positive Bacterium Bacillus licheniformis. Biochemistry, 2006, 45, 15049-15055.	2.5	49
27	Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni. Biochemical Journal, 2006, 395, 191-201.	3.7	38
28	2-Hydroxy-3-(3-oxobutyl)naphthalene-1,4-dione. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o671-o673.	0.4	2
29	Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex. EMBO Journal, 2006, 25, 4963-4970.	7.8	67
30	Energy barriers of proton transfer reactions between amino acid side chain analogs and water fromab initio calculations. Journal of Computational Chemistry, 2006, 27, 1534-1547.	3.3	10
31	Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18860-18865.	7.1	47
32	Probing Heme Propionate Involvement in Transmembrane Proton Transfer Coupled to Electron Transfer in Dihemic Quinol:Fumarate Reductase by13C-Labeling and FTIR Difference Spectroscopyâ€. Biochemistry, 2005, 44, 16718-16728.	2.5	23
33	FTIR Difference Spectra ofWolinella succinogenesQuinol:Fumarate Reductase Support a Key Role of Glu C180 within the "E-Pathway Hypothesis―of Coupled Transmembrane Electron and Proton Transferâ€. Biochemistry, 2005, 44, 13949-13961.	2.5	18
34	Characterization of the Menaquinone Reduction Site in the Diheme Cytochrome b Membrane Anchor of Wolinella succinogenes NiFe-hydrogenase. Journal of Biological Chemistry, 2004, 279, 274-281.	3.4	43
35	lon pump in the movies. Nature, 2004, 432, 286-287.	27.8	11
36	Calculated Coupling of Transmembrane Electron and Proton Transfer in Dihemic Quinol:Fumarate Reductase. Biophysical Journal, 2004, 87, 4298-4315.	0.5	39

C ROY D LANCASTER

#	Article	IF	CITATIONS
37	The role of electrostatics in proton-conducting membrane protein complexes. FEBS Letters, 2003, 545, 52-60.	2.8	28
38	<i>Wolinella succinogenes</i> quinol:fumarate reductase and its comparison to <i>E. coli</i> succinate:quinone reductase. FEBS Letters, 2003, 555, 21-28.	2.8	39
39	The structure of Wolinella succinogenes quinol:Fumarate reductase and its relevance to the superfamily of succinate:Quinone oxidoreductases. Advances in Protein Chemistry, 2003, 63, 131-149.	4.4	14
40	Crystallization of Wolinella succinogenes Quinol: Fumarate Reductase. , 2003, , 219-II.		2
41	Purification and Characterization of the Recombinant Na ⁺ -Translocating NADH:Quinone Oxidoreductase from <i>Vibrio cholerae</i> . Biochemistry, 2002, 41, 3781-3789.	2.5	111
42	Succinate:quinone oxidoreductases from ϊμ-proteobacteria11Dedicated to Achim Kröger on the occasion of his 65th birthday. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 84-101.	1.0	52
43	Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 23-38.	1.0	134
44	Succinate:quinone oxidoreductases: an overview. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 1-6.	1.0	119
45	Wolinella succinogenes quinol:fumarate reductase—2.2-à resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 215-231.	2.6	50
46	A P-type ion pump at work. , 2002, 9, 643-645.		5
47	A third crystal form ofWolinella succinogenesquinol:fumarate reductase reveals domain closure at the site of fumarate reduction. FEBS Journal, 2001, 268, 1820-1827.	0.2	52
48	Three Molecules of Ubiquinone Bind Specifically to Mitochondrial Cytochrome bc 1Complex. Journal of Biological Chemistry, 2001, 276, 35231-35234.	3.4	56
49	A third crystal form of Wolinella succinogenes quinol:fumarate reductase reveals domain closure at the site of fumarate reduction. FEBS Journal, 2001, 268, 1820-1827.	0.2	1
50	Structural Basis of the Drastically Increased Initial Electron Transfer Rate in the Reaction Center from a Rhodopseudomonas viridis Mutant Described at 2.00-Ã Resolution. Journal of Biological Chemistry, 2000, 275, 39364-39368.	3.4	57
51	Structure of fumarate reductase from Wolinella succinogenes at 2.2 à resolution. Nature, 1999, 402, 377-385.	27.8	346
52	The role of electrostatic interactions for cytochrome c oxidase function. Journal of Bioenergetics and Biomembranes, 1998, 30, 81-87.	2.3	25
53	Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Molecular Microbiology, 1998, 30, 639-646.	2.5	41
54	The Coupling of Electron Transfer and Proton Translocation: Electrostatic Calculations on Paracoccus denitrificans Cytochrome c Oxidase. Biophysical Journal, 1998, 74, 708-721.	0.5	159

C ROY D LANCASTER

#	Article	IF	CITATIONS
55	The Structure of the Rhodopseudomonas Viridis Reaction Centre - An Overview and Recent Advances. , 1998, , 673-678.		2
56	The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure, 1997, 5, 1339-1359.	3.3	211
57	Three-dimensional structures of photosynthetic reaction centers. Photosynthesis Research, 1996, 48, 65-74.	2.9	34
58	The Coupling of Light-Induced Electron Transfer and Proton Uptake: Electrostatic Calculations on the Photosynthetic Reaction Centre from Rhodopseudomonas Viridis. , 1995, , 903-906.		2
59	Mimicking the membrane-mediated conformation of dynorphin A-(1-13)-peptide: circular dichroism and nuclear magnetic resonance studies in methanolic solution. Biochemistry, 1991, 30, 4715-4726.	2.5	31
60	Potent inhibitors of glucagon-stimulated adenylate cyclase associated with serum lipoprotein particles. Biochemistry and Cell Biology, 1989, 67, 759-762.	2.0	1
61	Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochimica Et Biophysica Acta - Biomembranes, 1988, 945, 161-166.	2.6	44