
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3742145/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future.<br>Current Opinion in Biotechnology, 2022, 73, 88-94.                                                             | 6.6 | 13        |
| 2  | Identification of a Transferrable Terminator Element That Inhibits Small RNA Production and Improves<br>Transgene Expression Levels. Frontiers in Plant Science, 2022, 13, .                                          | 3.6 | 11        |
| 3  | Amplification of cell signaling and disease resistance by an immunity receptor Ve1Ve2 heterocomplex in plants. Communications Biology, 2022, 5, .                                                                     | 4.4 | 4         |
| 4  | Control of rootâ€ŧoâ€shoot longâ€distance flow by a key ROSâ€regulating factor in <i>Arabidopsis</i> .<br>Plant, Cell and Environment, 2022, 45, 2476-2491.                                                           | 5.7 | 4         |
| 5  | , a new Australian species in. Australian Systematic Botany, 2021, 34, 477-484.                                                                                                                                       | 0.9 | 9         |
| 6  | Plant-Based Vaccines: The Way Ahead?. Viruses, 2021, 13, 5.                                                                                                                                                           | 3.3 | 36        |
| 7  | An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana<br>benthamiana to study histone modifications of an allotetraploid plant. Molecular Biology Reports,<br>2020, 47, 9499-9509. | 2.3 | 4         |
| 8  | The Whys and Wherefores of Transitivity in Plants. Frontiers in Plant Science, 2020, 11, 579376.                                                                                                                      | 3.6 | 19        |
| 9  | Homo sapiens: The Superspreader of Plant Viral Diseases. Viruses, 2020, 12, 1462.                                                                                                                                     | 3.3 | 6         |
| 10 | Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops.<br>Journal of Agricultural and Food Chemistry, 2020, 68, 7670-7677.                                                       | 5.2 | 18        |
| 11 | The key role of terminators on the expression and postâ€ŧranscriptional gene silencing of transgenes.<br>Plant Journal, 2020, 104, 96-112.                                                                            | 5.7 | 43        |
| 12 | Plinâ€amiR, a preâ€microRNAâ€based technology for controlling herbivorous insect pests. Plant<br>Biotechnology Journal, 2020, 18, 1925-1932.                                                                          | 8.3 | 36        |
| 13 | Are the current gRNA ranking prediction algorithms useful for genome editing in plants?. PLoS ONE, 2020, 15, e0227994.                                                                                                | 2.5 | 52        |
| 14 | The Rapid Methylation of T-DNAs Upon Agrobacterium Inoculation in Plant Leaves. Frontiers in Plant<br>Science, 2019, 10, 312.                                                                                         | 3.6 | 17        |
| 15 | Improved insectâ€proofing: expressing doubleâ€stranded RNA in chloroplasts. Pest Management Science,<br>2018, 74, 1751-1758.                                                                                          | 3.4 | 36        |
| 16 | Compactly Supported Solutions of Reaction–Diffusion Models of Biological Spread. Mathematics for<br>Industry, 2018, , 125-138.                                                                                        | 0.4 | 1         |
| 17 | Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic<br>Research, 2018, 27, 451-460.                                                                                        | 2.4 | 121       |
| 18 | The Rise and Rise of <i>Nicotiana benthamiana</i> : A Plant for All Reasons. Annual Review of Phytopathology, 2018, 56, 405-426.                                                                                      | 7.8 | 201       |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A conditional silencing suppression system for transient expression. Scientific Reports, 2018, 8, 9426.                                                                                                                            | 3.3  | 11        |
| 20 | Live Cell Imaging Reveals the Relocation of dsRNA Binding Proteins Upon Viral Infection. Molecular<br>Plant-Microbe Interactions, 2017, 30, 435-443.                                                                               | 2.6  | 16        |
| 21 | Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data<br>Acquisition. Frontiers in Plant Science, 2017, 8, 1669.                                                                              | 3.6  | 18        |
| 22 | The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses, 2017, 9, 294.                                                                                                                               | 3.3  | 24        |
| 23 | The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a<br>transposon sequence. PLoS ONE, 2017, 12, e0171311.                                                                          | 2.5  | 32        |
| 24 | In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts.<br>Frontiers in Plant Science, 2016, 7, 1453.                                                                                        | 3.6  | 68        |
| 25 | Stable expression of silencingâ€suppressor protein enhances the performance and longevity of an engineered metabolic pathway. Plant Biotechnology Journal, 2016, 14, 1418-1426.                                                    | 8.3  | 11        |
| 26 | Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies<br>Major Latex Protein Family Members Critical for Normal Development. Molecular and Cellular<br>Proteomics, 2016, 15, 2033-2047. | 3.8  | 39        |
| 27 | The Emerging World of Small ORFs. Trends in Plant Science, 2016, 21, 317-328.                                                                                                                                                      | 8.8  | 99        |
| 28 | Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nature Plants, 2015, 1, 14027.                                                                                                             | 9.3  | 85        |
| 29 | The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nature Plants, 2015,<br>1, 15165.                                                                                                                | 9.3  | 114       |
| 30 | Coding in non-coding RNAs. Nature, 2015, 520, 41-42.                                                                                                                                                                               | 27.8 | 36        |
| 31 | Missing Pieces in the Puzzle of Plant MicroRNAs. Trends in Plant Science, 2015, 20, 721-728.                                                                                                                                       | 8.8  | 44        |
| 32 | MicroRNA Regulatory Mechanisms Play Different Roles in Arabidopsis. Journal of Proteome Research,<br>2015, 14, 4743-4751.                                                                                                          | 3.7  | 22        |
| 33 | Chimeric DCL1-Partnering Proteins Provide Insights into the MicroRNA Pathway. Frontiers in Plant<br>Science, 2015, 6, 1201.                                                                                                        | 3.6  | 11        |
| 34 | Combining Transcriptome Assemblies from Multiple De Novo Assemblers in the Allo-Tetraploid Plant<br>Nicotiana benthamiana. PLoS ONE, 2014, 9, e91776.                                                                              | 2.5  | 167       |
| 35 | The Use of Artificial MicroRNA Technology to Control Gene Expression in Arabidopsis thaliana.<br>Methods in Molecular Biology, 2014, 1062, 211-224.                                                                                | 0.9  | 15        |
| 36 | Mobile gene silencing in <i>Arabidopsis</i> is regulated by hydrogen peroxide. PeerJ, 2014, 2, e701.                                                                                                                               | 2.0  | 20        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biology Direct, 2013, 8, 6.                                          | 4.6 | 121       |
| 38 | C. elegans RNA-dependent RNA polymerases rrf-1 and ego-1 silence Drosophila transgenes by differing mechanisms. Cellular and Molecular Life Sciences, 2013, 70, 1469-1481.                          | 5.4 | 9         |
| 39 | A 22â€nt artificial micro RNA mediates widespread RNA silencing in A rabidopsis. Plant Journal, 2013, 76,<br>519-529.                                                                               | 5.7 | 52        |
| 40 | Complete genomic sequence of a Rubus yellow net virus isolate and detection of genome-wide pararetrovirus-derived small RNAs. Virus Research, 2013, 178, 306-313.                                   | 2.2 | 29        |
| 41 | Small RNA sequencing of Potato leafroll virus-infected plants reveals an additional subgenomic RNA encoding a sequence-specific RNA-binding protein. Virology, 2013, 438, 61-69.                    | 2.4 | 21        |
| 42 | Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines. Frontiers in Plant Science, 2013, 4, 362.                   | 3.6 | 29        |
| 43 | De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana. PLoS ONE, 2013, 8, e59534.                                                                    | 2.5 | 152       |
| 44 | DRB2, DRB3 and DRB5 function in a non-canonical microRNA pathway in <i>Arabidopsis thaliana</i> .<br>Plant Signaling and Behavior, 2012, 7, 1224-1229.                                              | 2.4 | 50        |
| 45 | Gene Silencing in Arabidopsis Spreads from the Root to the Shoot, through a Gating Barrier, by<br>Template-Dependent, Nonvascular, Cell-to-Cell Movement  Â. Plant Physiology, 2012, 159, 984-1000. | 4.8 | 76        |
| 46 | Isolation and Analysis of Small RNAs from Virus-Infected Plants. Methods in Molecular Biology, 2012,<br>894, 173-189.                                                                               | 0.9 | 2         |
| 47 | Advanced Engineering of Lipid Metabolism in Nicotiana benthamiana Using a Draft Genome and the V2<br>Viral Silencing-Suppressor Protein. PLoS ONE, 2012, 7, e52717.                                 | 2.5 | 85        |
| 48 | The Enamovirus PO protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology, 2012, 426, 178-187.                                         | 2.4 | 116       |
| 49 | DRB2 Is Required for MicroRNA Biogenesis in Arabidopsis thaliana. PLoS ONE, 2012, 7, e35933.                                                                                                        | 2.5 | 68        |
| 50 | The Arabidopsis thaliana Double-Stranded RNA Binding (DRB) Domain Protein Family. , 2011, , 385-406.                                                                                                |     | 5         |
| 51 | Vectors and Methods for Hairpin RNA and Artificial microRNA-Mediated Gene Silencing in Plants.<br>Methods in Molecular Biology, 2011, 701, 179-197.                                                 | 0.9 | 27        |
| 52 | Mobile silencing in plants: what is the signal and what defines the target. Frontiers in Biology, 2011, 6, 140-146.                                                                                 | 0.7 | 4         |
| 53 | Efficient Silencing of Endogenous MicroRNAs Using Artificial MicroRNAs in Arabidopsis thaliana.<br>Molecular Plant, 2011, 4, 157-170.                                                               | 8.3 | 72        |
| 54 | Expression of Caenorhabditis elegans RNA-directed RNA polymerase in transgenic Drosophila<br>melanogaster does not affect morphological development. Transgenic Research, 2010, 19, 1121-1128.      | 2.4 | 6         |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Rapid match-searching for gene silencing assessment. Bioinformatics, 2010, 26, 1932-1937.                                                                                              | 4.1  | 4         |
| 56 | The <i>Arabidopsis thaliana</i> double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. Rna, 2009, 15, 2219-2235.                              | 3.5  | 198       |
| 57 | The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus. Archives of Virology, 2009, 154, 1125-1128. | 2.1  | 25        |
| 58 | miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 2009, 113, 1794-1804.                                                                            | 1.4  | 184       |
| 59 | The roles of plant dsRNAâ€binding proteins in RNAiâ€ŀike pathways. FEBS Letters, 2008, 582, 2753-2760.                                                                                 | 2.8  | 90        |
| 60 | RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology, 2008, 147, 456-468.                                                                                         | 4.8  | 259       |
| 61 | Regulation of Dormancy in Barley by Blue Light and After-Ripening: Effects on Abscisic Acid and<br>Gibberellin Metabolism Â. Plant Physiology, 2008, 147, 886-896.                     | 4.8  | 178       |
| 62 | Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. Rna, 2008, 14, 903-913.                               | 3.5  | 47        |
| 63 | Synthesis of complementary RNA by RNA-dependent RNA polymerases in plant extracts is independent of an RNA primer. Functional Plant Biology, 2008, 35, 1091.                           | 2.1  | 3         |
| 64 | Cloning and characterization of microRNAs from <i>Brassica napus</i> . FEBS Letters, 2007, 581, 3848-3856.                                                                             | 2.8  | 52        |
| 65 | RNA Silencing and Its Application in Functional Genomics. , 2007, , 291-332.                                                                                                           |      | 1         |
| 66 | RNAi for insect-proof plants. Nature Biotechnology, 2007, 25, 1231-1232.                                                                                                               | 17.5 | 305       |
| 67 | Viruses Face a Double Defense by Plant Small RNAs. Science, 2006, 313, 54-55.                                                                                                          | 12.6 | 53        |
| 68 | The evolution and diversification of Dicers in plants. FEBS Letters, 2006, 580, 2442-2450.                                                                                             | 2.8  | 283       |
| 69 | Defense and counterdefense in the plant world. Nature Genetics, 2006, 38, 138-139.                                                                                                     | 21.4 | 7         |
| 70 | RNA interferenceâ€inducing hairpin RNAs in plants act through the viral defence pathway. EMBO<br>Reports, 2006, 7, 1168-1175.                                                          | 4.5  | 284       |
| 71 | Small RNA Viruses of Insects: Expression in Plants and RNA Silencing. Advances in Virus Research, 2006,<br>68, 459-502.                                                                | 2.1  | 28        |
| 72 | A novel T-DNA vector design for selection of transgenic lines with simple transgene integration and stable transgene expression. Functional Plant Biology, 2005, 32, 671.              | 2.1  | 18        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A high-throughput inducible RNAi vector for plants. Plant Biotechnology Journal, 2005, 3, 583-590.                                                                                                         | 8.3  | 130       |
| 74 | Plant and animal microRNAs: similarities and differences. Functional and Integrative Genomics, 2005, 5, 129-135.                                                                                           | 3.5  | 223       |
| 75 | Constructs and Methods for Hairpin RNA-Mediated Gene Silencing in Plants. Methods in Enzymology, 2005, 392, 24-35.                                                                                         | 1.0  | 89        |
| 76 | RNA silencing platforms in plants. FEBS Letters, 2005, 579, 5982-5987.                                                                                                                                     | 2.8  | 162       |
| 77 | On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3275-3280. | 7.1  | 273       |
| 78 | A Plant Orthologue of RNase L Inhibitor (RLI) Is Induced in Plants Showing RNA Interference. Journal of Molecular Evolution, 2004, 59, 20-30.                                                              | 1.8  | 32        |
| 79 | Posttranscriptional Gene Silencing in Plants. , 2004, 265, 117-129.                                                                                                                                        |      | 16        |
| 80 | A suite of novel promoters and terminators for plant biotechnology. Functional Plant Biology, 2003, 30, 443.                                                                                               | 2.1  | 61        |
| 81 | A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots. Functional Plant Biology, 2003, 30, 453.                                                     | 2.1  | 41        |
| 82 | Title is missing!. Molecular Breeding, 2003, 11, 295-301.                                                                                                                                                  | 2.1  | 26        |
| 83 | Posttranscriptional Gene Silencing Is Not Compromised in the Arabidopsis CARPEL FACTORY<br>(DICER-LIKE1) Mutant, a Homolog of Dicer-1 from Drosophila. Current Biology, 2003, 13, 236-240.                 | 3.9  | 142       |
| 84 | Exploring plant genomes by RNA-induced gene silencing. Nature Reviews Genetics, 2003, 4, 29-38.                                                                                                            | 16.3 | 303       |
| 85 | Constructs and methods for high-throughput gene silencing in plants. Methods, 2003, 30, 289-295.                                                                                                           | 3.8  | 285       |
| 86 | Gene Silencing - Principles And Application. , 2002, 24, 239-256.                                                                                                                                          |      | 2         |
| 87 | Application of gene silencing in plants. Current Opinion in Plant Biology, 2002, 5, 146-150.                                                                                                               | 7.1  | 104       |
| 88 | A Branched Pathway for Transgene-Induced RNA Silencing in Plants. Current Biology, 2002, 12, 684-688.                                                                                                      | 3.9  | 238       |
| 89 | Biopharming the SimpliREDâ,,¢ HIV diagnostic reagent in barley, potato and tobacco. Molecular<br>Breeding, 2002, 9, 113-121.                                                                               | 2.1  | 58        |
| 90 | High-throughput vectors for efficient gene silencing in plants. Functional Plant Biology, 2002, 29,<br>1217.                                                                                               | 2.1  | 150       |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Role of short RNAs in gene silencing. Trends in Plant Science, 2001, 6, 297-301.                                                                                                                   | 8.8  | 95        |
| 92  | Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants. Rna, 2001, 7, 16-28.                                                                      | 3.5  | 87        |
| 93  | Construct design for efficient, effective and high-throughput gene silencing in plants. Plant Journal, 2001, 27, 581-590.                                                                          | 5.7  | 1,368     |
| 94  | Title is missing!. Molecular Breeding, 2001, 7, 195-202.                                                                                                                                           | 2.1  | 152       |
| 95  | Gene silencing as an adaptive defence against viruses. Nature, 2001, 411, 834-842.                                                                                                                 | 27.8 | 891       |
| 96  | Gene silencing: Fleshing out the bones. Current Biology, 2001, 11, R99-R102.                                                                                                                       | 3.9  | 21        |
| 97  | The RNA World in Plants: Post-Transcriptional Control III. Plant Cell, 2001, 13, 1710.                                                                                                             | 6.6  | 0         |
| 98  | A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf<br>virus. Molecular Plant Pathology, 2000, 1, 347-356.                                       | 4.2  | 196       |
| 99  | Total silencing by intron-spliced hairpin RNAs. Nature, 2000, 407, 319-320.                                                                                                                        | 27.8 | 867       |
| 100 | High-efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. , 2000, 43, 67-82.                         |      | 136       |
| 101 | IMPROVED VECTORS FOR AGROBACTERIUM TUMEFACIENS-MEDIATED TRANSFORMATION OF MONOCOT PLANTS. Acta Horticulturae, 1998, , 401-408.                                                                     | 0.2  | 86        |
| 102 | Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Molecular Biology, 1997, 33, 729-735.              | 3.9  | 36        |
| 103 | Characterisation of the Subgenomic RNAs of an Australian Isolate of Barley Yellow Dwarf Luteovirus.<br>Virology, 1994, 202, 565-573.                                                               | 2.4  | 57        |
| 104 | Combinatorial infection andin vivorecombination: a strategy for making large phage antibody repertoires. Nucleic Acids Research, 1993, 21, 2265-2266.                                              | 14.5 | 168       |
| 105 | Putative full-length clones of the genomic DNA segments of subterranean clover stunt virus and identification of the segment coding for the viral coat protein. Virus Research, 1993, 27, 161-171. | 2.2  | 23        |
| 106 | A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleavage domain. Virology, 1991, 183, 711-720.                                                      | 2.4  | 62        |