Hao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741518/publications.pdf Version: 2024-02-01

HAO SONG

#	Article	IF	CITATIONS
1	Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, The, 2020, 395, 565-574.	13.7	9,430
2	A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology, 2020, 30, 2196-2203.e3.	3.9	480
3	Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host and Microbe, 2016, 19, 696-704.	11.0	426
4	Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 2020, 11, 4417.	12.8	394
5	Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 2021, 184, 4380-4391.e14.	28.9	261
6	Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses. Science, 2013, 342, 243-247.	12.6	237
7	Structures of the <scp>SARS</scp> oVâ€2 nucleocapsid and their perspectives for drug design. EMBO Journal, 2020, 39, e105938.	7.8	198
8	An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 2017, 8, 14369.	12.8	192
9	Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nature Structural and Molecular Biology, 2016, 23, 456-458.	8.2	165
10	Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discovery, 2020, 6, 68.	6.7	132
11	Contribution of intertwined loop to membrane association revealed by Zika virus fullâ€length <scp>NS</scp> 1 structure. EMBO Journal, 2016, 35, 2170-2178.	7.8	126
12	Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Research, 2017, 27, 151-153.	12.0	116
13	Cryo-EM Structure of the African Swine Fever Virus. Cell Host and Microbe, 2019, 26, 836-843.e3.	11.0	113
14	The crystal structure of Zika virus <scp>NS</scp> 5 reveals conserved drug targets. EMBO Journal, 2017, 36, 919-933.	7.8	107
15	Crystal Structure of the Capsid Protein from Zika Virus. Journal of Molecular Biology, 2018, 430, 948-962.	4.2	98
16	An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. PLoS Pathogens, 2016, 12, e1005411.	4.7	92
17	Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya Virus Envelope Protein. Cell, 2019, 177, 1714-1724.e12.	28.9	75
18	Human Neonatal Fc Receptor Is the Cellular Uncoating Receptor for Enterovirus B. Cell, 2019, 177, 1553-1565.e16.	28.9	69

Hao Song

#	Article	IF	CITATIONS
19	Microarray analysis of MicroRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infectious Diseases, 2013, 13, 257.	2.9	66
20	A broadly protective antibody that targets the flavivirus NS1 protein. Science, 2021, 371, 190-194.	12.6	66
21	Structural insight into RNA synthesis by influenza D polymerase. Nature Microbiology, 2019, 4, 1750-1759.	13.3	58
22	Avian-to-Human Receptor-Binding Adaptation by Influenza A Virus Hemagglutinin H4. Cell Reports, 2017, 20, 1201-1214.	6.4	57
23	Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunology Research, 2019, 7, 1244-1257.	3.4	51
24	Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein and Cell, 2016, 7, 866-877.	11.0	44
25	Structures of the fourÂlg-like domain LILRB2 and the four-domain LILRB1 and HLA-G1 complex. Cellular and Molecular Immunology, 2020, 17, 966-975.	10.5	38
26	ACVR1, a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a. International Journal of Molecular Sciences, 2012, 13, 2063-2077.	4.1	36
27	Two classes of protective antibodies against Pseudorabies virus variant glycoprotein B: Implications for vaccine design. PLoS Pathogens, 2017, 13, e1006777.	4.7	34
28	Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide Reveals a Conserved Drug Target for Filovirus. Journal of Virology, 2017, 91, .	3.4	31
29	Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Reports, 2019, 29, 2217-2228.e5.	6.4	27
30	Crystal Structure of African Swine Fever Virus dUTPase Reveals a Potential Drug Target. MBio, 2019, 10, .	4.1	24
31	Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses. Nature Communications, 2020, 11, 5964.	12.8	22
32	Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal Transduction and Targeted Therapy, 2021, 6, 51.	17.1	20
33	Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18711-18718.	7.1	18
34	Crystal structures of the two membrane-proximal Ig-like domains (D3D4) of LILRB1/B2: alternative models for their involvement in peptide-HLA binding. Protein and Cell, 2013, 4, 761-770.	11.0	14
35	Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein. Virology, 2017, 507, 101-109.	2.4	13
36	Structures of Zika Virus E & NS1: Relations with Virus Infection and Host Immune Responses. Advances in Experimental Medicine and Biology, 2018, 1062, 77-87.	1.6	13

HAO SONG

#	Article	IF	CITATIONS
37	Target-Based Virtual Screening and LC/MS-Guided Isolation Procedure for Identifying Phloroglucinol-Terpenoid Inhibitors of SARS-CoV-2. Journal of Natural Products, 2022, 85, 327-336.	3.0	13
38	Genomic characterizations of H4 subtype avian influenza viruses from live poultry markets in Sichuan province of China, 2014–2015. Science China Life Sciences, 2018, 61, 1123-1126.	4.9	12
39	Structure-Based Modification of an Anti-neuraminidase Human Antibody Restores Protection Efficacy against the Drifted Influenza Virus. MBio, 2020, 11, .	4.1	12
40	Crystal structure of the C-terminal fragment of NS1 protein from yellow fever virus. Science China Life Sciences, 2017, 60, 1403-1406.	4.9	11
41	Zika Virus Envelope Protein and Antibody Complexes. Sub-Cellular Biochemistry, 2018, 88, 147-168.	2.4	10
42	The antigenicity of SARS-CoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain. Signal Transduction and Targeted Therapy, 2022, 7, 18.	17.1	9
43	Structural basis of malarial parasite RIFIN-mediated immune escape against LAIR1. Cell Reports, 2021, 36, 109600.	6.4	7
44	Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
45	Reply to "Nuclear Export Signal and Immunodominant CD8+T Cell Epitope in Influenza A Virus Matrix Protein 1― Journal of Virology, 2012, 86, 10259-10260.	3.4	1