
Martijn van Zanten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741368/publications.pdf Version: 2024-02-01

MADTHN VAN ZANTEN

#	Article	IF	CITATIONS
1	2D morphometric analysis of Arabidopsis thaliana nuclei reveals characteristic profiles of different cell types and accessions. Chromosome Research, 2022, 30, 5-24.	2.2	7
2	Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytologist, 2022, 234, 1144-1160.	7.3	54
3	Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 2022, 11, .	4.3	6
4	Plant thermotropism: an underexplored thermal engagement and avoidance strategy. Journal of Experimental Botany, 2021, , .	4.8	4
5	The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nature Communications, 2021, 12, 2842.	12.8	30
6	The chemical compound â€~Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1â€subfamily of nitrilases. Plant Journal, 2021, 106, 1523-1540.	5.7	7
7	Protein kinase and phosphatase control of plant temperature responses. Journal of Experimental Botany, 2021, , .	4.8	6
8	Examiners' use of rubric criteria for grading bachelor theses. Assessment and Evaluation in Higher Education, 2021, 46, 1269-1284.	5.6	5
9	The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. Journal of Experimental Botany, 2020, 71, 6211-6225.	4.8	18
10	A high throughput method for quantifying number and size distribution of Arabidopsis seeds using large particle flow cytometry. Plant Methods, 2020, 16, 27.	4.3	7
11	HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in <i>Arabidopsis thaliana</i> by mediating H2A.Z depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25343-25354.	7.1	91
12	Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. Frontiers in Plant Science, 2019, 10, 1807.	3.6	66
13	POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007280.	3.5	99
14	Thermosensing Enlightened. Trends in Plant Science, 2017, 22, 185-187.	8.8	32
15	Genetic Dissection of Morphometric Traits Reveals That Phytochrome B Affects Nucleus Size and Heterochromatin Organization in <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2519-2531.	1.8	14
16	Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2016, 2, 15190.	9.3	432
17	Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits. PLoS Genetics, 2015, 11, e1005594.	3.5	7
18	Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis Â. Plant Physiology, 2015, 169, 194-208.	4.8	22

Martijn van Zanten

#	Article	IF	CITATIONS
19	HISTONE DEACETYLASE 9 represses seedling traits in <i>Arabidopsis thaliana</i> dry seeds. Plant Journal, 2014, 80, 475-488.	5.7	107
20	Environment-Induced Chromatin Reorganisation and Plant Acclimation. Signaling and Communication in Plants, 2013, , 21-40.	0.7	4
21	High temperature acclimation through PIF4 signaling. Trends in Plant Science, 2013, 18, 59-64.	8.8	94
22	Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. Journal of Experimental Botany, 2013, 64, 613-624.	4.8	40
23	Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis. Plant Physiology, 2013, 163, 882-895.	4.8	28
24	Epigenetic Signalling During the Life of Seeds. Signaling and Communication in Plants, 2013, , 127-153.	0.7	13
25	Shedding Light on Large-Scale Chromatin Reorganization in Arabidopsis thaliana. Molecular Plant, 2012, 5, 583-590.	8.3	42
26	Control and consequences of chromatin compaction during seed maturation in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 338-341.	2.4	23
27	Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63, 5581-5591.	4.8	108
28	Illumina Sequencing Technology as a Method of Identifying T-DNA Insertion Loci in Activation-Tagged Arabidopsis thaliana Plants. Molecular Plant, 2012, 5, 948-950.	8.3	22
29	Ethyleneâ€induced differential petiole growth in <i>Arabidopsis thaliana</i> involves local microtubule reorientation and cell expansion. New Phytologist, 2012, 193, 339-348.	7.3	74
30	Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. Planta, 2012, 235, 677-685.	3.2	15
31	Identification of the Arabidopsis REDUCED DORMANCY 2 Gene Uncovers a Role for the Polymerase Associated Factor 1 Complex in Seed Dormancy. PLoS ONE, 2011, 6, e22241.	2.5	77
32	Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant Journal, 2011, 67, 434-446.	5.7	62
33	Seed maturation in <i>Arabidopsis thaliana</i> is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20219-20224.	7.1	141
34	Ethylene-induced hyponastic growth in <i>Arabidopsis thaliana</i> is controlled by ERECTA. Plant Journal, 2010, 61, 83-95.	5.7	39
35	Photoreceptors CRYTOCHROME2 and Phytochrome B Control Chromatin Compaction in Arabidopsis. Plant Physiology, 2010, 154, 1686-1696.	4.8	44
36	Large-scale chromatin de-compaction induced by low light is not accompanied by nucleosomal displacement. Plant Signaling and Behavior, 2010, 5, 1677-1678.	2.4	11

Martijn van Zanten

#	Article	IF	CITATIONS
37	ERECTA controls low light intensity-induced differential petiole growth independent of Phytochrome B and Cryptochrome 2 action in Arabidopsis thaliana. Plant Signaling and Behavior, 2010, 5, 284-286.	2.4	14
38	Kinome Profiling Reveals an Interaction Between Jasmonate, Salicylate and Light Control of Hyponastic Petiole Growth in Arabidopsis thaliana. PLoS ONE, 2010, 5, e14255.	2.5	21
39	Auxin perception and polar auxin transport are not always a prerequisite for differential growth. Plant Signaling and Behavior, 2009, 4, 899-901.	2.4	11
40	Hormone- and Light-Mediated Regulation of Heat-Induced Differential Petiole Growth in Arabidopsis. Plant Physiology, 2009, 151, 1446-1458.	4.8	78
41	PHYTOCHROME B and HISTONE DEACETYLASE 6 Control Light-Induced Chromatin Compaction in Arabidopsis thaliana. PLoS Genetics, 2009, 5, e1000638.	3.5	123
42	Differential petiole growth in <i>Arabidopsis thaliana</i> : photocontrol and hormonal regulation. New Phytologist, 2009, 184, 141-152.	7.3	77
43	The many functions of ERECTA. Trends in Plant Science, 2009, 14, 214-218.	8.8	187
44	Abscisic Acid Antagonizes Ethylene-Induced Hyponastic Growth in Arabidopsis. Plant Physiology, 2007, 143, 1013-1023.	4.8	59
45	How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics, 2006, 7, 137.	2.6	124