David M Villeneuve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741190/publications.pdf

Version: 2024-02-01

246 papers

18,491 citations

71
h-index

133 g-index

252 all docs 252 docs citations

252 times ranked

5278 citing authors

#	Article	lF	CITATIONS
1	Coherent control of ultrafast extreme ultraviolet transient absorption. Nature Photonics, 2022, 16, 45-51.	31.4	30
2	Disentangling interferences in the photoelectron momentum distribution from strong-field ionization. Physical Review A, 2022, 106, .	2.5	1
3	Single-shot dispersion sampling for optical pulse reconstruction. Optics Express, 2021, 29, 11845.	3.4	2
4	High-harmonic generation in metallic titanium nitride. Nature Communications, 2021, 12, 4981.	12.8	22
5	Complete characterization of attosecond photoelectron wave packets. Physical Review A, 2021, 104, .	2.5	2
6	Signatures of Light-Induced Potential Energy Surfaces in H2+. Journal of Physics: Conference Series, 2020, 1412, 092017.	0.4	0
7	Clocking Enhanced Ionization of Hydrogen Molecules with Rotational Wave Packets. Physical Review Letters, 2020, 125, 173201.	7.8	16
8	Control of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mo>+</mml:mo><td>2.5 nml:msup</td><td>>⁷/mml:mat</td></mml:msup></mml:math>	2.5 nml:msup	> ⁷ /mml:mat
9	Population transfer to high angular momentum states in infrared-assisted XUV photoionization of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 164003.	1.5	5
10	Selection of the magnetic quantum number in resonant ionization of neon using an XUV–IR two-color laser field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 134002.	1.5	8
11	Nitrogen Laser Emissions of Short and Long Durations Generated in Air. IEEE Transactions on Plasma Science, 2020, 48, 647-657.	1.3	0
12	Simultaneous measurements of strong-field ionization and high harmonic generation in aligned molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 084006.	1.5	7
13	Probing multiphoton light-induced molecular potentials. Nature Communications, 2020, 11, 2596.	12.8	26
14	Femtosecond streaking in ambient air. Optica, 2020, 7, 1372.	9.3	25
15	High conversion efficiency of an optical parametric amplifier pumped by $1\mathrm{kHz}$ Ti:Sapphire laser pulses for tunable high-harmonic generation. Optics Express, 2020, 28, 4088.	3.4	3
16	Symmetry of Molecular Rydberg States Revealed by XUV Transient Absorption Spectroscopy. , 2020, , .		0
17	Short- and long-term gain dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi mathvariant="normal">N</mml:mi><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:msubsup></mml:math> air lasing. Physical Review A. 2019. 100	2.5	12
18	Threshold photodissociation dynamics of NO2 studied by time-resolved cold target recoil ion momentum spectroscopy. Journal of Chemical Physics, 2019, 151, 174301.	3.0	16

#	Article	IF	Citations
19	Streaking strong-field double ionization. Physical Review A, 2019, 100, .	2.5	3
20	Attosecond imaging of molecules using high harmonic spectroscopy. Nature Reviews Physics, 2019, 1, 144-155.	26.6	79
21	Spatiotemporal imaging of valence electron motion. Nature Communications, 2019, 10, 1042.	12.8	27
22	Non-Born-Oppenheimer electronic wave packet in molecular nitrogen at 14 eV probed by time-resolved photoelectron spectroscopy. Physical Review A, 2019, 99, .	2.5	5
23	Symmetry of molecular Rydberg states revealed by XUV transient absorption spectroscopy. Nature Communications, 2019, 10, 5269.	12.8	17
24	High-harmonic generation in solids driven by counter-propagating pulses. Optics Express, 2019, 27, 32630.	3.4	7
25	Near-field imaging for single-shot waveform measurements. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 065603.	1.5	9
26	Attosecond science. Contemporary Physics, 2018, 59, 47-61.	1.8	29
27	Transient gain from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mo>+</mml:mo><td>/mm::msu</td><td>p>27mml:ma</td></mml:msup></mml:math>	/mm::msu	p>27mml:ma
28	Strong-field optoelectronics in solids. Nature Photonics, 2018, 12, 465-468.	31.4	80
29	Controlling High Harmonic Generation in Tailored Semiconductors. , 2018, , .		0
30	Coherent imaging of an attosecond electron wave packet. Science, 2017, 356, 1150-1153.	12.6	97
31	Plasmon-enhanced high-harmonic generation from silicon. Nature Physics, 2017, 13, 659-662.	16.7	194
32	Integrating solids and gases for attosecond pulse generation. Nature Photonics, 2017, 11, 594-599.	31.4	24
33	Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry. Physical Review Letters, 2017, 119, 083401.	7.8	34
34	Wavelength scaling of high harmonic generation for 267 nm, 400 nm and 800 nm driving laser pulses. Journal of Physics Communications, 2017 , 1 , 015009 .	1.2	10
35	Ultrafast Dissociation of Metastable <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>CO</mml:mi></mml:mrow><mml:mrow><mmlin 118,="" 153001.<="" 2017,="" a="" dimer.="" letters,="" physical="" review="" td=""><td>าไ:เกิด>2<!--</td--><td>mr2/ŧmn><m< td=""></m<></td></td></mmlin></mml:mrow></mml:msup></mml:mrow></mml:math>	าไ:เกิด>2 </td <td>mr2/ŧmn><m< td=""></m<></td>	mr 2 /ŧmn> <m< td=""></m<>
36	Tailored semiconductors for high-harmonic optoelectronics. Science, 2017, 357, 303-306.	12.6	173

#	Article	IF	CITATIONS
37	Reply to Comment on â€~Time delays in molecular photoionization'. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 078003.	1.5	O
38	Streak Camera for Strong-Field Ionization. Physical Review Letters, 2017, 119, 183201.	7.8	21
39	Tailored high-harmonic generation in nanostructured semiconductors. , 2017, , .		0
40	Producing and controlling half-cycle near-infrared electric-field transients. Optica, 2017, 4, 826.	9.3	12
41	Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum. Physical Review A, 2016, 94, .	2.5	7
42	Interferometric time delay correction for Fourier transform spectroscopy in the extreme ultraviolet. Journal of Modern Optics, 2016, 63, 1661-1667.	1.3	4
43	<i>In situ</i> attosecond pulse characterization techniques to measure the electromagnetic phase. Physical Review A, 2016, 94, .	2.5	12
44	Full characterization of an attosecond pulse generated using an infrared driver. Scientific Reports, 2016, 6, 26771.	3.3	5
45	Time delay in molecular photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 095602.	1.5	68
46	Attosecond pulses measured from the attosecond lighthouse. Nature Photonics, 2016, 10, 171-175.	31.4	56
47	High harmonics and attosecond pulses — Seeing inside molecules. , 2015, , .		0
48	Contribution of multiple electron trajectories to high-harmonic generation in the few-cycle regime. Physical Review A, 2015, 91, .	2.5	8
49	Octave-spanning hyperspectral coherent diffractive imaging in the extreme ultraviolet range. Optics Express, 2015, 23, 28960.	3.4	16
50	Attosecond lighthouse driven by sub-two-cycle, $1.8 < i > \hat{l} 4 < i > m$ laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 061001.	1.5	22
51	To the extreme. Nature Physics, 2015, 11, 529-530.	16.7	3
52	Controlling attosecond angular streaking with second harmonic radiation. Optics Letters, 2015, 40, 1768.	3.3	11
53	Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy. Journal of Chemical Physics, 2014, 140, 204301.	3.0	41
54	Manipulating quantum paths for novel attosecond measurement methods. Nature Photonics, 2014, 8, 187-194.	31.4	54

#	Article	IF	CITATIONS
55	Strong field processes inside gallium arsenide. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 204025.	1.5	12
56	Signatures of the continuum electron phase in molecular strong-field photoelectron holography. Nature Physics, 2014, 10, 594-600.	16.7	150
57	Alignment Dependent Enhancement of the Photoelectron Cutoff for Multiphoton Ionization of Molecules. Physical Review Letters, 2014, 112, 253001.	7.8	12
58	Applications of ultrafast wavefront rotation in highly nonlinear optics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124004.	1.5	53
59	Photonic streaking of attosecond pulse trains. Nature Photonics, 2013, 7, 651-656.	31.4	126
60	Petahertz optical oscilloscope. Nature Photonics, 2013, 7, 958-962.	31.4	163
61	Trajectory-Resolved Coulomb Focusing in Tunnel Ionization of Atoms with Intense, Elliptically Polarized Laser Pulses. Physical Review Letters, 2013, 111, 023005.	7.8	58
62	High harmonic cutoff energy scaling and laser intensity measurement with a 1.8 \hat{l}^{1} 4m laser source. Journal of Modern Optics, 2013, 60, 1458-1465.	1.3	18
63	Linked attosecond phase interferometry for molecular frame measurements. Nature Physics, 2013, 9, 174-178.	16.7	49
64	Laser-induced orbital projection and diffraction of O-2with velocity map imaging. Journal of Modern Optics, 2013, 60, 1395-1408.	1.3	5
65	Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Physics, 2013, 9, 159-163.	16.7	94
66	Carrier envelope phase effects in strong field ionization of xenon with few-cycle 1.8 $\hat{1}$ /4m laser pulses. EPJ Web of Conferences, 2013, 41, 02011.	0.3	0
67	Studying the Electronic Structure of Molecules with High Harmonic Spectroscopy. Springer Series in Optical Sciences, 2013, , 159-190.	0.7	1
68	Generation of broad XUV continuous high harmonic spectra and isolated attosecond pulses with intense mid-infrared lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 011001.	1.5	22
69	Observation of Cooper minimum in krypton using high harmonic spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 074010.	1.5	32
70	High-harmonic transient grating spectroscopy of NO2 electronic relaxation. Journal of Chemical Physics, 2012, 137, 224303.	3.0	23
71	Order-dependent structure of high harmonic wavefronts. Optics Express, 2012, 20, 13870.	3.4	36
72	All-Optical Measurement of High-Harmonic Amplitudes and Phases in Aligned Molecules. Physical Review Letters, 2012, 108, 033903.	7.8	44

#	Article	IF	CITATIONS
73	Time-resolved high-harmonic spectroscopy of nonadiabatic dynamics in NO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review A, 2012, 85, .	2.5	36
74	Revealing the Cooper minimum of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">N</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> by Molecular Frame High-Harmonic Spectroscopy. Physical Review Letters, 2012, 109, 143001.	7.8	63
75	Publisher's Note: Probing Polar Molecules with High Harmonic Spectroscopy [Phys. Rev. Lett. 109 , 233904 (2012)]. Physical Review Letters, 2012, 109, .	7.8	5
76	Attosecond pulse trains generated with Oriented Molecules. , 2012, , .		0
77	Intensity dependence of multiple orbital contributions and shape resonance in high-order harmonic generation of aligned N <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> molecules. Physical Review A. 2012, 85	2.5	62
78	Oriented Rotational Wave-Packet Dynamics Studies via High Harmonic Generation. Physical Review Letters, 2012, 109, 113901.	7.8	119
79	High harmonic generation with long-wavelength few-cycle laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 074008.	1.5	55
80	Probing Polar Molecules with High Harmonic Spectroscopy. Physical Review Letters, 2012, 109, 233904.	7.8	67
81	Coulomb asymmetry and sub-cycle electron dynamics in multiphoton multiple ionization of H ₂ . Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 194011.	1.5	35
82	Interferometric Carrier Envelope Phase Control of Few-Cycle IR Pulses., 2012,,.		0
83	Toward complete space-time reconstruction of light pulses. , 2012, , .		0
84	Partitioning of the Linear Photon Momentum in Multiphoton Ionization. Physical Review Letters, 2011, 106, 193002.	7.8	150
85	Conical Intersection Dynamics in NO ₂ Probed by Homodyne High-Harmonic Spectroscopy. Science, 2011, 334, 208-212.	12.6	222
86	Ultrahigh-Order Wave Mixing in Noncollinear High Harmonic Generation. Physical Review Letters, 2011, 106, 023001.	7.8	104
87	CEP stable 16 cycle laser pulses at 18 \hat{l} 4m. Optics Express, 2011, 19, 6858.	3.4	95
88	Probing Angular Correlations in Sequential Double Ionization. Physical Review Letters, 2011, 107, 113003.	7.8	101
89	Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Physics, 2011, 7, 464-467.	16.7	303
90	Separation of target structure and medium propagation effects in high-harmonic generation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 095601.	1.5	33

#	Article	IF	Citations
91	Probing the Spatial Structure of a Molecular Attosecond Electron Wave Packet Using Shaped Recollision Trajectories. Physical Review Letters, 2011, 107, 093004.	7.8	60
92	Following a chemical reaction using high harmonic spectroscopy., 2011,,.		1
93	Versatile approach for frequency resolved wavefront characterization. Proceedings of SPIE, 2011, , .	0.8	O
94	Following a chemical reaction using high-harmonic interferometry. Nature, 2010, 466, 604-607.	27.8	394
95	Direct Test of Laser Tunneling with Electron Momentum Imaging. Physical Review Letters, 2010, 105, 133002.	7.8	127
96	Controlling the Interference of Multiple Molecular Orbitals in High-Harmonic Generation. Physical Review Letters, 2010, 104, 233904.	7.8	127
97	High-Harmonic Homodyne Detection of the Ultrafast Dissociation of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> mml:msub><a href="mailto</td><td>.7.8</td><td>31</td></tr><tr><th>98</th><td>Compression of 1.8â€,μm laser pulses to sub two optical cycles with bulk material. Applied Physics Letters, 2010, 96, .</td><td>3.3</td><td>126</td></tr><tr><th>99</th><th>Attosecond High Harmonic Spectroscopy to Observe Molecular Motion. , 2010, , .</th><th></th><th>O</th></tr><tr><th>100</th><td>Phase sensitivity of high harmonic transient grating spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 065401.</td><td>1.5</td><td>17</td></tr><tr><th>101</th><td>Probing the symmetry of atomic wavefunctions from the point of view of strong field-driven electrons. New Journal of Physics, 2010, 12, 073032.</td><td>2.9</td><td>20</td></tr><tr><th>102</th><td>Mapping Molecular Orbital Symmetry on High-Order Harmonic Generation Spectrum Using Two-Color Laser Fields. Physical Review Letters, 2010, 105, 053003.</td><td>7.8</td><td>75</td></tr><tr><th>103</th><td>Gating attosecond pulse train generation using multicolor laser fields. Physical Review A, 2010, 81, .</td><td>2.5</td><td>55</td></tr><tr><th>104</th><td>Sub two-cycle pulse compression at 1.8 <math display=" inline"="">\hat{A}\mu m with bulk material. , 2010, , .		0
105	Towards CEP stable, single-cycle pulse compression with bulk material. , 2010, , .		O
106	Spectral Wavefront Optical Reconstruction by Diffraction., 2010,,.		0
107	Towards CEP stable sub two cycle IR pulse compression with bulk material. , 2010, , .		O
108	Subcycle spatial mapping of recollision dynamics. Physical Review A, 2009, 80, .	2.5	9

#	Article	IF	CITATIONS
109	Observation of Electronic Structure Minima in High-Harmonic Generation. Physical Review Letters, 2009, 102, 103901.	7.8	193
110	Angular Tunneling Ionization Probability of Fixed-in-Space <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Molecules in Intense Laser Pulses. Physical Review Letters, 2009, 102, 033004.	7.8	123
111	Attosecond Circular Dichroism Spectroscopy of Polyatomic Molecules. Physical Review Letters, 2009, 102, 063601.	7.8	104
112	Momentum space tomographic imaging of photoelectrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 185402.	1.5	56
113	High harmonic interferometry of multi-electron dynamics in molecules. Nature, 2009, 460, 972-977.	27.8	960
114	Atomic wavefunctions probed through strong-field light–matterÂinteraction. Nature Physics, 2009, 5, 412-416.	16.7	170
115	An STM for molecules and wide-bandgap crystal. Laser Physics, 2009, 19, 1697-1704.	1.2	5
116	Pulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors. Optics Letters, 2009, 34, 1894.	3.3	22
117	Frequency-resolved high-harmonic wavefront characterization. Optics Letters, 2009, 34, 3026.	3.3	40
118	Laser Tunnel Ionization from Multiple Orbitals in HCl. Science, 2009, 325, 1364-1367.	12.6	283
119	Wavelength Scaling of High Harmonic Generation Efficiency. Physical Review Letters, 2009, 103, 073902.	7.8	303
120	High-contrast pump-probe spectroscopy with high-order harmonics. , 2009, , .		0
121	Laser-Induced Electron Tunneling and Diffraction. Science, 2008, 320, 1478-1482.	12.6	692
122	High-Order Harmonic Transient Grating Spectroscopy in a Molecular Jet. Physical Review Letters, 2008, 100, 143903.	7.8	52
123	Dynamic Two-Center Interference in High-Order Harmonic Generation from Molecules with Attosecond Nuclear Motion. Physical Review Letters, 2008, 101, 053901.	7.8	105
124	High harmonic generation from aligned molecules–amplitude and polarization. Journal of Modern Optics, 2008, 55, 2591-2602.	1.3	49
125	Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules. New Journal of Physics, 2008, 10, 025015.	2.9	33

#	Article	IF	Citations
127	Wavelength-dependent study of strong-field Coulomb explosion of hydrogen. New Journal of Physics, 2008, 10, 083011.	2.9	21
128	Strong-field non-sequential double ionization: wavelength dependence of ion momentum distributions for neon and argon. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 031001.	1.5	33
129	High-order harmonic generation experiments with IR laser pulses. , 2007, 6703, 97.		0
130	Polarization State of High-Order Harmonic Emission from Aligned Molecules. Physical Review Letters, 2007, 99, 243001.	7.8	127
131	Binary and Recoil Collisions in Strong Field Double Ionization of Helium. Physical Review Letters, 2007, 99, 263002.	7.8	255
132	Attosecond Strobing of Two-Surface Population Dynamics in DissociatingH2+. Physical Review Letters, 2007, 98, 073003.	7.8	128
133	High harmonic generation and molecular orbital tomography in multielectron systems. Journal of Chemical Physics, 2007, 126, 114306.	3.0	73
134	Transient phase masks in high-harmonic generation. Optics Letters, 2007, 32, 436.	3.3	8
135	Direct Measurement of the Angular Dependence of Ionization forN2,O2, andCO2in Intense Laser Fields. Physical Review Letters, 2007, 98, 243001.	7.8	408
136	High Harmonic Generation and the Role of Atomic Orbital Wave Functions. Physical Review Letters, 2007, 98, 183903.	7.8	100
137	At a glance. Nature, 2007, 449, 997-999.	27.8	1
138	High Harmonic Generation and Molecular Orbital Tomography in Multielectron Systems: Beyond the Single Active Electron Approximation. Physical Review Letters, 2006, 97, 123003.	7.8	167
139	Control and Measurement of attosecond pulses. , 2006, , .		0
140	Generation of 11 fs pulses by using hollow-core gas-filled fibers at a 100 kHz repetition rate. Optics Letters, 2006, 31, 3185.	3.3	13
141	Generation and complete characterization of intense mid-infrared ultrashort pulses. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 332.	2.1	17
142	Attosecond physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, R1-R37.	1.5	283
143	Field-Free Three-Dimensional Alignment of Polyatomic Molecules. Physical Review Letters, 2006, 97, 173001.	7.8	160
144	Alignment independence of the instantaneous ionization rate for nitrogen molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, L159-L166.	1.5	17

#	Article	IF	Citations
145	Measuring and controlling the birth of attosecond XUV pulses. Nature Physics, 2006, 2, 781-786.	16.7	335
146	<title>Tomographic imaging of molecular orbitals using high harmonic generation</title> ., 2006, , .		0
147	Laser Coulomb explosion imaging for probing ultra-fast molecular dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, S503-S513.	1.5	36
148	Measured field-free alignment of deuterium by few-cycle pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4081-4086.	1.5	21
149	Controlling vibrational wave packets with intense, few-cycle laser pulses. Physical Review A, 2006, 73, .	2.5	73
150	Coherent creation and annihilation of rotational wave packets in incoherent ensembles. Physical Review A, 2006, 73, .	2.5	61
151	Probing the electronic structure of molecules with high harmonics. Journal of Modern Optics, 2006, 53, 185-192.	1.3	6
152	Attosecond Temporal Gating with Elliptically Polarized Light. Physical Review Letters, 2006, 97, 253903.	7.8	43
153	Attosecond pulses and imaging of molecular orbitals. , 2006, , .		0
154	Measurement and control of attosecond pulse formation. , 2006, , .		0
155	Attosecond and Angstrom precision measurements of a Molecule's Electrons. , 2005, , JME2.		0
156	Coherent cooling of molecular vibrational motion with laser-induced dipole forces. Springer Series in Chemical Physics, 2005, , 855-857.	0.2	0
157	Observation of Coulomb focusing in tunnelling ionization of noble gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1923-1933.	1.5	106
158	Imaging the time-dependent structure of a molecule as it undergoes dynamics. Physical Review A, 2005, 72, .	2.5	89
159	Laser Coulomb-explosion imaging of small molecules. Physical Review A, 2005, 71, .	2.5	94
160	Controlling Attosecond Double Ionization Dynamics via Molecular Alignment. Physical Review Letters, 2005, 95, 203003.	7.8	132
161	Shakeup Excitation during Optical Tunnel Ionization. Physical Review Letters, 2005, 94, 033003.	7.8	58
162	PHYSICS: Toward Creating a Rutherford Atom. Science, 2005, 307, 1730-1731.	12.6	0

#	Article	IF	Citations
163	Attosecond dynamics using sub-laser-cycle electron pulses. Journal of Modern Optics, 2005, 52, 453-464.	1.3	13
164	Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses. Physical Review A, 2005, 72, .	2.5	43
165	Mapping Attosecond Electron Wave Packet Motion. Physical Review Letters, 2005, 94, 083003.	7.8	151
166	Controlling High Harmonic Generation with Molecular Wave Packets. Physical Review Letters, 2005, 94, 123902.	7.8	264
167	Two-pulse alignment of molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L43-L48.	1.5	103
168	Fully Differential Rates for Femtosecond Multiphoton Double Ionization of Neon. Physical Review Letters, 2004, 92, 213002.	7.8	131
169	Phase Control of Rotational Wave Packets and Quantum Information. Physical Review Letters, 2004, 93, 233601.	7.8	108
170	Stopping a Vibrational Wave Packet with Laser-Induced Dipole Forces. Physical Review Letters, 2004, 92, 133002.	7.8	58
171	Tomographic imaging of molecular orbitals. Nature, 2004, 432, 867-871.	27.8	2,028
172	Fully differential rates for femtosecond multiphoton double ionization of neon., 2004,,.		2
173	Controlling High-Harmonic Generation via Molecular Alignment. Springer Series in Optical Sciences, 2004, , 247-251.	0.7	1
174	Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature, 2003, 421, 826-829.	27.8	376
175	Direct imaging of rotational wave-packet dynamics of diatomic molecules. Physical Review A, 2003, 68, .	2.5	260
176	Time-Resolved Double Ionization with Few Cycle Laser Pulses. Physical Review Letters, 2003, 91, 093002.	7.8	103
177	Alignment-Dependent Strong Field Ionization of Molecules. Physical Review Letters, 2003, 90, 233003.	7.8	445
178	Electron-Electron Momentum Exchange in Strong Field Double Ionization. Physical Review Letters, 2003, 91, 123004.	7.8	56
179	Controlling Vibrational Wave Packet Motion with Intense Modulated Laser Fields. Physical Review Letters, 2003, 90, 203601.	7.8	75
180	Introduction to this Special Issue on Ultrafast Optics. Applied Physics B: Lasers and Optics, 2002, 74, s1-s1.	2.2	0

#	Article	lF	CITATIONS
181	Sub-laser-cycle electron pulses for probing molecular dynamics. Nature, 2002, 417, 917-922.	27.8	597
182	Conversion of high-power 15-fs visible pulses to the mid infrared. Optics Letters, 2001, 26, 99.	3.3	18
183	Production and Study of Triply Charged Diatomic Ions with Femtosecond Pulses: Application toâ€. Journal of Physical Chemistry A, 2001, 105, 2435-2443.	2.5	5
184	Nonadiabatic Multielectron Dynamics in Strong Field Molecular Ionization. Physical Review Letters, 2001, 86, 51-54.	7.8	196
185	Intense-field laser ionization rates in atoms and molecules. Physical Review A, 2001, 64, .	2.5	198
186	Quantum Interference in Double Ionization and Fragmentation of C6H6in Intense Laser Fields. Physical Review Letters, 2001, 87, 253003.	7.8	104
187	Few Cycle Dynamics of Multiphoton Double Ionization. Physical Review Letters, 2001, 86, 3522-3525.	7.8	87
188	Centrifugal Dissociation of a Molecule Using the Optical Centrifuge. Springer Series in Chemical Physics, 2001, , 326-330.	0.2	1
189	Nonlinear Optical Method for Determining the Absolute Carrier Phase of a Laser Pulse. Springer Series in Chemical Physics, 2001, , 90-92.	0.2	0
190	Strong fields molecular optics. AIP Conference Proceedings, 2000, , .	0.4	0
191	Forced Molecular Rotation in an Optical Centrifuge. Physical Review Letters, 2000, 85, 542-545.	7.8	263
192	Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse. Optics Letters, 2000, 25, 1672.	3.3	89
193	Nonlinear Ionization of Organic Molecules in High Intensity Laser Fields. Physical Review Letters, 2000, 84, 5082-5085.	7.8	156
194	Measurement of the frequency and spectral width of the Langmuir wave spectrum driven by stimulated Raman scattering. Physics of Plasmas, 1999, 6, 4284-4292.	1.9	5
195	Experimental study of drilling sub- $10\hat{l}$ 4m holes in thin metal foils with femtosecond laser pulses. Applied Surface Science, 1999, 152, 138-148.	6.1	79
196	Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 1999, 69, S367-S371.	2.3	78
197	Molecular science with strong laser fields. Faraday Discussions, 1999, 113, 47-59.	3.2	41
198	Space charge and plasma effects in zero kinetic energy (ZEKE)photoelectron spectroscopy. Journal of Chemical Physics, 1997, 107, 5310-5318.	3.0	13

#	Article	IF	CITATIONS
199	Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics. Chemical Physics, 1996, 207, 331-354.	1.9	69
200	Nonadiabatic wave packet dynamics: Predissociation of IBr. Journal of Chemical Physics, 1996, 105, 5647-5650.	3.0	39
201	Enhanced ionization of diatomic molecules in strong laser fields: A classical model. Physical Review A, 1996, 54, 736-741.	2.5	90
202	Observation of fractional revivals of a molecular wave packet. Physical Review A, 1996, 54, R37-R40.	2.5	230
203	Wave Packet Isotope Separation. Physical Review Letters, 1996, 77, 3518-3521.	7.8	122
204	Wavepacket Dynamics via Femtosecond Time-Resolved Photoelectron and Photoionization Spectroscopy. Springer Series in Chemical Physics, 1996, , 187-189.	0.2	0
205	Collisional enhancement of Rydberg lifetimes observed in vibrational wave packet experiments. Journal of Chemical Physics, 1995, 103, 4538-4550.	3.0	70
206	Femtosecond waveâ€packet dynamics studied by timeâ€resolved zeroâ€kinetic energy photoelectron spectroscopy. Journal of Chemical Physics, 1995, 102, 5566-5569.	3.0	138
207	Thomson scattering measurements of ionâ€acoustic waves driven by ionâ€acoustic decay instabilities. Physics of Plasmas, 1995, 2, 1364-1366.	1.9	1
208	Spectroscopy and gain dynamics issues in inhomogeneous X-ray laser plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 2765-2780.	1.5	3
209	Characterization of laserâ€produced plasmas by ultraviolet Thomson scattering. Physics of Plasmas, 1994, 1, 2329-2341.	1.9	37
210	Optimization of X-ray laser gain in neonlike germanium plasmas. Canadian Journal of Physics, 1994, 72, 793-801.	1.1	0
211	Dynamics of Neâ€like populations in the germanium xâ€ray laser. Physics of Fluids B, 1993, 5, 4465-4472.	1.7	8
212	Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling. Physics of Fluids B, 1993, 5, 3319-3327.	1.7	43
213	Observation of plasma waves by Thomson scattering: Saturation of stimulated Raman scattering. Physical Review Letters, 1993, 71, 368-371.	7.8	18
214	Stimulated Brillouin sidescattering from lineâ€focus laserâ€produced plasmas. Physics of Fluids B, 1993, 5, 1924-1925.	1.7	0
215	Electron-temperature inhomogeneities along an x-ray laser plasma. Physical Review E, 1993, 47, 583-590.	2.1	15
216	Laser plasma sources for proximity printing or projection x-ray lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 3239.	1.6	27

#	Article	IF	CITATIONS
217	Test of the Landau cutoff of stimulated Raman scattering spectra as an electron-temperature diagnostic in laser-produced plasmas. Physical Review Letters, 1992, 68, 484-487.	7.8	16
218	<title>Diagnostics of x-ray laser plasmas (Invited Paper)</title> ., 1992,,.		0
219	<title>Observations of x-ray gain in a laser-produced germanium plasma</title> ., 1992, , .		1
220	Collective Thomson scattering in a laser-produced plasma resolved in time, space, frequency, or wave number. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 895.	2.1	29
221	X-ray laser gain measurements in a collisionally excited germanium plasma. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 2047.	2.1	21
222	Reflectivity of stimulated Brillouin scattering in picosecond time scales. , 1991, , .		1
223	Coexistence of stimulated Raman and Brillouin scattering in laserâ€produced plasmas. Physics of Fluids B, 1991, 3, 2341-2348.	1.7	46
224	Largeâ€scale structures in lineâ€focused plasma. Physics of Fluids B, 1991, 3, 463-467.	1.7	13
225	<title>Studies of high Z exploding foils irradiated by combined long (2 ns) and short (10 ps) pulses of <math>1 \text{w}</math> light</title> ., 1990, 1229, 128.		11
226	<title>Study of stimulated Brillouin scattering driven by a 10-ps pump</title> ., 1990, 1229, 144.		4
227	Backward and forward stimulated Raman scattering from thin foil targets with a 0.26 1 /4m laser. Physics of Fluids B, 1990, 2, 166-170.	1.7	19
228	Observation of laser-induced anisotropic changes in the frequency and damping of ion acoustic waves in a laser plasma. Physical Review A, 1989, 39, 2549-2560.	2.5	5
229	Monochromatic x-ray imaging of a laser produced plasma. Applied Optics, 1989, 28, 4333.	2.1	10
230	Observation of forward Raman scattering enhanced by backward Raman scattering in a laser plasma. Physics of Fluids, 1988, 31, 1790.	1.4	23
231	Measurement of plasma wave frequency from absolute stimulated Raman scattering near the quarter-critical surface in a laser plasma. Physics of Fluids, 1987, 30, 3832.	1.4	3
232	Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser–plasma interaction. Physics of Fluids, 1987, 30, 3616.	1.4	20
233	Observation of laser-induced anisotropy in ion acoustic waves in a plasma. Physical Review Letters, 1987, 58, 1644-1647.	7.8	6
234	Suppression of stimulated Raman scattering by the seeding of stimulated Brillouin scattering in a laser-produced plasma. Physical Review Letters, 1987, 59, 1585-1588.	7.8	73

#	Article	IF	CITATIONS
235	Plasma waves in laser fusion plasmas. Canadian Journal of Physics, 1986, 64, 961-968.	1.1	17
236	Mode Coupling in Laser Produced Plasmas. , 1986, , 299-306.		0
237	Observation of plasma waves from absolute stimulated Raman scattering. Physics of Fluids, 1985, 28, 1591.	1.4	11
238	The production of (3/2) ï‰0 light by the two-plasmon decay instability. Physics of Fluids, 1985, 28, 1454.	1.4	18
239	Production of hot electrons by two-plasmon decay instability in uv laser plasmas. Physics of Fluids, 1984, 27, 721.	1.4	39
240	Thermal transport measurements in 1.05 \hat{l} 4m laser irradiation of spherical targets. Physics of Fluids, 1984, 27, 516.	1.4	40
241	Electron Plasma-Wave Production by Stimulated Raman Scattering: Competition with Stimulated Brillouin Scattering. Physical Review Letters, 1984, 53, 1445-1448.	7.8	101
242	Features of lateral energy transport in CO2-laser-irradiated microdisk targets. Physical Review A, 1983, 27, 2656-2662.	2.5	7
243	Energy Partition in CO2-Laser-Irradiated Microballoons. Physical Review Letters, 1981, 47, 515-518.	7.8	16
244	Calorimetric system for recording plasma blowoff and scattered light distributions from laser plasmas. Review of Scientific Instruments, 1980, 51, 306-309.	1.3	8
245	Device for measuring positions in spherical coordinates. Review of Scientific Instruments, 1980, 51, 1268-1269.	1.3	0
246	Anomalous Energy Transport to Rear Surface of Microdisks at High Laser Irradiances. Physical Review Letters, 1979, 43, 1995-1998.	7.8	49