Felix Grewe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738882/publications.pdf Version: 2024-02-01

FELLY CDEWE

#	Article	IF	CITATIONS
1	Extreme RNA Editing in Coding Islands and Abundant Microsatellites in Repeat Sequences of Selaginella moellendorffii Mitochondria: The Root of Frequent Plant mtDNA Recombination in Early Tracheophytes. Genome Biology and Evolution, 2011, 3, 344-358.	2.5	164
2	<i>Ginkgo</i> and <i>Welwitschia</i> Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution. Molecular Biology and Evolution, 2016, 33, 1448-1460.	8.9	151
3	A trans -splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Research, 2009, 37, 5093-5104.	14.5	139
4	Ancestors of Trans-Splicing Mitochondrial Introns Support Serial Sister Group Relationships of Hornworts and Mosses with Vascular Plants. Molecular Biology and Evolution, 2004, 22, 117-125.	8.9	104
5	A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii. Nucleic Acids Research, 2011, 39, 2890-2902.	14.5	102
6	Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evolutionary Biology, 2013, 13, 8.	3.2	91
7	Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution. Genome Biology and Evolution, 2014, 6, 580-590.	2.5	91
8	The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria. Plant Cell, 2016, 28, 2805-2829.	6.6	91
9	Dynamic evolution of <i>Geranium</i> mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytologist, 2015, 208, 570-583.	7.3	84
10	Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion, 2014, 19, 135-143.	3.4	81
11	Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns – a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evolutionary Biology, 2016, 16, 134.	3.2	64
12	Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants. PLoS ONE, 2015, 10, e0117075.	2.5	58
13	Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. Molecular Phylogenetics and Evolution, 2015, 90, 140-149.	2.7	56
14	Lycophyte plastid genomics: extreme variation in <scp>GC</scp> , gene and intron content and multiple inversions between a direct and inverted orientation of the <scp>rRNA</scp> repeat. New Phytologist, 2019, 222, 1061-1075.	7.3	51
15	Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Current Genetics, 2010, 56, 189-201.	1.7	50
16	Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches. Scientific Reports, 2016, 6, 22262.	3.3	42
17	Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usnea antarctica and Usnea aurantiacoatra. MycoKeys, 2018, 43, 91-113.	1.9	36

2

FELIX GREWE

#	Article	IF	CITATIONS
19	Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. Symbiosis, 2020, 82, 133-147.	2.3	34
20	Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA. Scientific Reports, 2017, 7, 9884.	3.3	33
21	Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota). Scientific Reports, 2019, 9, 8968.	3.3	32
22	Extreme Features of the Galdieria sulphuraria Organellar Genomes: A Consequence of Polyextremophily?. Genome Biology and Evolution, 2015, 7, 367-380.	2.5	31
23	Genome-Wide Analysis of Biosynthetic Gene Cluster Reveals Correlated Gene Loss with Absence of Usnic Acid in Lichen-Forming Fungi. Genome Biology and Evolution, 2020, 12, 1858-1868.	2.5	28
24	Genome-scale data reveal the role of hybridization in lichen-forming fungi. Scientific Reports, 2020, 10, 1497.	3.3	26
25	Loss of a <i>Trans-</i> Splicing <i>nad1</i> Intron from Geraniaceae and Transfer of the Maturase Gene <i>matR</i> to the Nucleus in <i>Pelargonium</i> . Genome Biology and Evolution, 2016, 8, 3193-3201.	2.5	22
26	Life in wood: preliminary phylogeny of deep-sea wood-boring bivalves (Xylophagaidae), with descriptions of three new genera and one new species. Journal of Molluscan Studies, 2019, 85, 232-243.	1.2	21
27	Laser capture microdissection microscopy and genome sequencing of the avian malaria parasite, Plasmodium relictum. Parasitology Research, 2016, 115, 4503-4510.	1.6	20
28	Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, <i>Xanthoparmelia</i> (<i>Parmeliaceae</i> , Ascomycota). Lichenologist, 2018, 50, 299-312.	0.8	20
29	Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. Fungal Diversity, 2018, 92, 31-41.	12.3	19
30	Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus, 2019, 10, 19.	3.8	17
31	On the nomenclature of the American clade of weasels (Carnivora: Mustelidae). Journal of Animal Diversity, 2021, 3, 1-8.	0.5	17
32	Characterizing the ribosomal tandem repeat and its utility as a DNA barcode in lichen-forming fungi. BMC Evolutionary Biology, 2020, 20, 2.	3.2	16
33	Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction. Biology Letters, 2021, 17, 20210123.	2.3	15
34	IMA Genome - F13. IMA Fungus, 2020, 11, 19.	3.8	13
35	Effects of dispersal strategy and migration history on genetic diversity and population structure of Antarctic lichens. Journal of Biogeography, 2021, 48, 1635-1653.	3.0	13
36	Using RADseq to understand the circumâ€Antarctic distribution of a lichenized fungus, <i>Pseudocyphellaria glabra</i> . Journal of Biogeography, 2021, 48, 78-90.	3.0	11

Felix Grewe

#	Article	IF	CITATIONS
37	Monilophyte mitochondrial rps1 genes carry a unique group II intron that likely originated from an ancient paralog in rpl2. Rna, 2016, 22, 1338-1348.	3.5	11
38	The genomic basis of army ant chemosensory adaptations. Molecular Ecology, 2021, 30, 6627-6641.	3.9	9
39	Population genomics of a reindeer lichen species from North American lichen woodlands. American Journal of Botany, 2021, 108, 159-171.	1.7	8
40	IMA Genome - F15. IMA Fungus, 2021, 12, 30.	3.8	8
41	Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus, 2020, 11, 27.	3.8	7
42	Species boundaries in the messy middle—A genomeâ€scale validation of species delimitation in a recently diverged lineage of coastal fog desert lichen fungi. Ecology and Evolution, 2021, 11, 18615-18632.	1.9	6
43	Phylogenetic study and taxonomic revision of the Xanthoparmelia mexicana group, including the description of a new species (Parmeliaceae, Ascomycota). MycoKeys, 2018, 40, 13-28.	1.9	4
44	Should we hail the Red King? Evolutionary consequences of a mutualistic lifestyle in genomes of lichenized ascomycetes. Ecology and Evolution, 2022, 12, e8471.	1.9	4
45	Phylogenomic reconstruction addressing the Peltigeralean backbone (Lecanoromycetes, Ascomycota). Fungal Diversity, 2021, 110, 59.	12.3	3
46	Diversity of Xanthoparmelia (Parmeliaceae) species in Mexican xerophytic scrub vegetation, evidenced by molecular, morphological and chemistry data. Anales Del Jardin Botanico De Madrid, 2021, 78, e107.	0.4	2
47	Contributions to the phylogeny of Lepraria (Stereocaulaceae) species from the Southern Hemisphere, including three new species. Bryologist, 2021, 124, .	0.6	2
48	Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Molecular Phylogenetics and Evolution, 2022, 174, 107543.	2.7	2
49	Early stages of speciation with gene flow in the Amazilia Hummingbird (<i>Amazilis amazilia</i>) subspecies complex of Western South America. Ecology and Evolution, 2022, 12, e8895.	1.9	1