StenbjĶrn Styring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738071/publications.pdf

Version: 2024-02-01

173 papers 11,813 citations

19636 61 h-index ²⁹¹²⁷
104
g-index

173 all docs

173 docs citations

times ranked

173

7621 citing authors

#	Article	IF	CITATIONS
1	Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 2001, 30, 36-49.	18.7	530
2	Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1408-1412.	3.3	487
3	Biomimetic and Microbial Approaches to Solar Fuel Generation. Accounts of Chemical Research, 2009, 42, 1899-1909.	7.6	403
4	pH-Dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry, 1991, 30, 830-839.	1.2	308
5	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	15.6	284
6	In the oxygen-evolving complex of photosystem II the SO state is oxidized to the S1 state by D+ (signal) Tj ETQq0) 0 _{1,2} rgBT	Overlock 10
7	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	15.6	264
8	Proton-Coupled Electron Transfer from Tyrosine in a Tyrosineâ^'Rutheniumâ^'tris-Bipyridine Complex:Â Comparison with TyrosineZOxidation in Photosystem II. Journal of the American Chemical Society, 2000, 122, 3932-3936.	6.6	262
9	Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science, 2019, 363, 249-253.	6.0	249
10	Spin-Density Distribution, Conformation, and Hydrogen Bonding of the Redox-Active Tyrosine YZ in Photosystem II from Multiple-Electron Magnetic-Resonance Spectroscopies: Implications for Photosynthetic Oxygen Evolution. Journal of the American Chemical Society, 1995, 117, 10325-10335.	6.6	243
11	Switching the Redox Mechanism:Â Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan. Journal of the American Chemical Society, 2005, 127, 3855-3863.	6.6	224
12	A hydrogen-atom abstraction model for the function of YZ in photosynthetic oxygen evolution. Photosynthesis Research, 1995, 46, 177-184.	1.6	220
13	A Model for the Photosystem II Reaction Center Core Including the Structure of the Primary Donor P680â€,‡. Biochemistry, 1996, 35, 14486-14502.	1.2	209
14	Iron sensitizer converts light to electrons with 92% yield. Nature Chemistry, 2015, 7, 883-889.	6.6	193
15	An Oscillating Manganese Electron Paramagnetic Resonance Signal from the SO State of the Oxygen Evolving Complex in Photosystem II. Biochemistry, 1997, 36, 13148-13152.	1.2	183
16	Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry, 1990, 29, 6179-6186.	1.2	165
17	Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 140-153.	0.5	151
18	Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy and Environmental Science, 2011, 4, 2379.	15.6	149

#	Article	IF	Citations
19	Artificial photosynthesis for solar fuels. Faraday Discussions, 2012, 155, 357-376.	1.6	149
20	Molecular interference of Cd2+ with Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1659, 19-31.	0.5	147
21	Light Induced Manganese Oxidation and Long-Lived Charge Separation in a Mn2II,IIâ^'Rull(bpy)3â^'Acceptor Triad. Journal of the American Chemical Society, 2005, 127, 17504-17515.	6.6	141
22	Involvement of Histidine 190 on the D1 Protein in Electron/Proton Transfer Reactions on the Donor Side of Photosystem Ilâ€. Biochemistry, 1998, 37, 14245-14256.	1.2	136
23	Mimicking Electron Transfer Reactions in Photosystem II:  Synthesis and Photochemical Characterization of a Ruthenium(II) Tris(bipyridyI) Complex with a Covalently Linked Tyrosine. Journal of the American Chemical Society, 1997, 119, 10720-10725.	6.6	135
24	Strong light photoinhibition of electrontransport in Photosystem II. Impairment of the function of the first quinone acceptor, QA. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1015, 269-278.	0.5	134
25	Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nature Plants, 2016, 2, 16035.	4.7	133
26	Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen-evolving system of Photosystem II measured by EPR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 378-387.	0.5	126
27	A Quantum Chemical Study of Hydrogen Abstraction from Manganese-Coordinated Water by a Tyrosyl Radical:Â A Model for Water Oxidation in Photosystem II. Journal of the American Chemical Society, 1997, 119, 8285-8292.	6.6	124
28	Binuclear Rutheniumâ^'Manganese Complexes as Simple Artificial Models for Photosystem II in Green Plants. Journal of the American Chemical Society, 1997, 119, 6996-7004.	6.6	123
29	Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy and Environmental Science, 2011, 4, 1284.	15.6	121
30	Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1608, 53-61.	0.5	120
31	Photosystem II disorganization and manganese release after photoinhibition of isolated spinach thylakoid membranes. FEBS Letters, 1988, 233, 408-412.	1.3	119
32	PsbR, a Missing Link in the Assembly of the Oxygen-evolving Complex of Plant Photosystem II. Journal of Biological Chemistry, 2006, 281, 145-150.	1.6	119
33	Dimeric and Monomeric Organization of Photosystem II. Journal of Biological Chemistry, 2006, 281, 14241-14249.	1.6	117
34	Oxygen evolving reactions catalysed by synthetic manganese complexes: A systematic screening. Dalton Transactions, 2007, , 4258.	1.6	111
35	The microwave power saturation of SIIslow varies with the redox state of the oxygen-evolving complex in photosystem II. Biochemistry, 1988, 27, 4915-4923.	1.2	110
36	Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 76-87.	0.5	108

#	Article	IF	CITATIONS
37	Increased photosystem II stability promotes H ₂ production in sulfur-deprived <i>Chlamydomonas reinhardtii</i> of the United States of America, 2013, 110, 7223-7228.	3.3	107
38	Evidence for a Precursor Complex in Cī£;H Hydrogen Atom Transfer Reactions Mediated by a Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2011, 50, 5648-5653.	7.2	103
39	Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 18O-enriched water mediated by a dinuclear manganese complexâ€"a mass spectrometry and EPR study. Energy and Environmental Science, 2008, 1, 668.	15.6	102
40	Mimicking the electron donor side of Photosystem II in artificial photosynthesis. Photosynthesis Research, 2006, 87, 25-40.	1.6	101
41	Photo-induced oxidation of a dinuclear Mn2II,II complex to the Mn2III,IV state by inter- and intramolecular electron transfer to RullItris-bipyridine. Journal of Inorganic Biochemistry, 2002, 91, 159-172.	1.5	97
42	Changes in the organization of Photosystem II following light-induced D1-protein degradation. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1017, 235-241.	0.5	96
43	Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 425-432.	0.5	93
44	Copper(II) Inhibition of Electron Transfer through Photosystem II Studied by EPR Spectroscopy. Biochemistry, 1995, 34, 12747-12754.	1.2	92
45	Hydrogen-Bond Promoted Intramolecular Electron Transfer to Photogenerated Ru(III):  A Functional Mimic of TyrosineZ and Histidine 190 in Photosystem II. Journal of the American Chemical Society, 1999, 121, 6834-6842.	6.6	90
46	Modified EPR spectra of the tyrosineD radical in photosystem II in site-directed mutants of Synechocystis sp. PCC 6803: Identification of side chains in the immediate vicinity of tyrosineD on the D2 protein. Biochemistry, 1993, 32, 5436-5441.	1.2	85
47	Rutheniumâ^'Manganese Complexes for Artificial Photosynthesis:Â Factors Controlling Intramolecular Electron Transfer and Excited-State Quenching Reactions. Inorganic Chemistry, 2002, 41, 1534-1544.	1.9	82
48	Tyrosyl Radicals in Enzyme Catalysis: Some Properties and a Focus on Photosynthetic Water Oxidation Acta Chemica Scandinavica, 1997, 51, 533-540.	0.7	82
49	Photodamage to photosystem II - primary and secondary events. Journal of Photochemistry and Photobiology B: Biology, 1992, 15, 15-31.	1.7	80
50	Interaction of ammonia with the water splitting enzyme of photosystem II. Biochemistry, 1990, 29, 24-32.	1.2	78
51	Photosynthetic water oxidation: The protein framework. Photosynthesis Research, 1993, 38, 249-263.	1.6	75
52	A Biomimetic Model System for the Water Oxidizing Triad in Photosystem II. Journal of the American Chemical Society, 1999, 121, 89-96.	6.6	75
53	Formation of Split Electron Paramagnetic Resonance Signals in Photosystem II Suggests That TyrosineZ Can Be Photooxidized at 5 K in the SO and S1 States of the Oxygen-Evolving Complex. Biochemistry, 2003, 42, 8066-8076.	1.2	74
54	Towards an artificial model for Photosystem II: a manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative1Preliminary accounts of this work have been presented as invited lectures at: EUCHEM Conference, Artificial Photosynthesis, May 1998, Sigtuna, Sweden; Fourth Nordic Congress on Photosynthesis, Nov. 1998, Naantali, Finland; EBEC, July 1998, Göteborg, Sweden.1. Journal of Inorganic Biochemistry, 2000, 78, 15-22.	1.5	73

#	Article	IF	Citations
55	Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Physical Chemistry Chemical Physics, 2004, 6, 4851-4858.	1.3	72
56	Fast oxygen-independent degradation of the DI reaction center protein in photosystem II. FEBS Letters, 1991, 280, 87-90.	1.3	71
57	pH Dependence of the Four Individual Transitions in the Catalytic S-Cycle during Photosynthetic Oxygen Evolutionâ€. Biochemistry, 2002, 41, 5830-5843.	1.2	70
58	Magneto-Optical Measurements of the Pigments in Fully Active Photosystem II Core Complexes from Plantsâ€. Biochemistry, 2002, 41, 1981-1989.	1.2	67
59	EPR relaxation measurements of Photosystem II reaction centers: influence of S-state oxidation and temperature. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 973, 428-442.	0.5	66
60	The SOState EPR Signal from the Mn Cluster in Photosystem II Arises from an IsolatedS=1/2Ground Stateâ€. Biochemistry, 1998, 37, 8115-8120.	1.2	65
61	Electronic Structure of Oxidized Complexes Derived fromcis-[Rull(bpy)2(H2O)2]2+and Its Photoisomerization Mechanism. Inorganic Chemistry, 2011, 50, 11134-11142.	1.9	64
62	Coupled electron transfers in artificial photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1283-1291.	1.8	60
63	Ca2+ depletion modifies the electron transfer on both donor and acceptor sides in Photosystem II from spinach. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1230, 155-164.	0.5	57
64	The role of cytochrome b559 and tyrosineD in protection against photoinhibition during in vivo photoactivation of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 180-191.	0.5	56
65	The S3 State of the Oxygen-Evolving Complex in Photosystem II Is Converted to the S2YZ• State at Alkaline pH,. Biochemistry, 2001, 40, 10881-10891.	1.2	55
66	Transcription of a "silent―cyanobacterial psbA gene is induced by microaerobic conditions. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 105-112.	0.5	55
67	The mechanism for proton–coupled electron transfer from tyrosine in a model complex and comparisons with Y Z oxidation in photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1471-1479.	1.8	54
68	Characterization of chlorophyll triplet promoting states in photosystem II sequentially induced during photoinhibition. Biochemistry, 1993, 32, 3334-3341.	1.2	51
69	Photosystem II in Different Parts of the Thylakoid Membrane: A Functional Comparison between Different Domainsâ€. Biochemistry, 2000, 39, 10478-10486.	1.2	51
70	Functional Characterization of Monomeric Photosystem II Core Preparations from Thermosynechococcus elongatus with or without the Psb27 Protein. Biochemistry, 2007, 46, 5542-5551.	1.2	50
71	Defining the Far-Red Limit of Photosystem II in Spinach Â. Plant Cell, 2009, 21, 2391-2401.	3.1	49
72	Coupled Activation of the Donor and the Acceptor Side of Photosystem II during Photoactivation of the Oxygen Evolving Clusterâ€. Biochemistry, 1998, 37, 11039-11045.	1.2	47

#	Article	IF	CITATIONS
73	Electrons generated by photosystem II are utilized by an oxidase in the absence of photosystem I in the cyanobacteriumSynechocystissp. PCC 6803. FEBS Letters, 1994, 337, 103-108.	1.3	45
74	Stepwise Disintegration of the Photosynthetic Oxygen-Evolving Complex. Journal of the American Chemical Society, 1998, 120, 10441-10452.	6.6	44
75	Insights into the function of PsbR protein in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 677-685.	0.5	44
76	First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles. Energy and Environmental Science, 2015, 8, 2492-2503.	15.6	43
77	Role of Novel Dimeric Photosystem II (PSII)-Psb27 Protein Complex in PSII Repair. Journal of Biological Chemistry, 2011, 286, 29548-29555.	1.6	42
78	Atomic structure of cobalt-oxide nanoparticles active in light-driven catalysis of water oxidation. International Journal of Hydrogen Energy, 2012, 37, 8878-8888.	3.8	42
79	Spectroscopic characterization of triplet forming states in photosystem II. Biochemistry, 1992, 31, 5957-5963.	1.2	41
80	Photosystem II in a mutant of Chlamydomonas reinhardtii lacking the 23 kDa psbP protein shows increased sensitivity to photoinhibition in the absence of chloride. Photosynthesis Research, 1994, 39, 75-83.	1.6	41
81	Spectroscopic Characterization of Intermediate Steps Involved in Donor-Side-Induced Photoinhibition of Photosystem II. Biochemistry, 1996, 35, 7794-7801.	1.2	41
82	Electron paramagnetic resonance study of the Sâ€=â€Â½â€ground state of a radiolysis-generated manganese(III)â€"trimanganese(IV) form of [MnIV4O6(bipy)6]4+ (bipyâ€=â€2,2′-bipyridine). Comparison photosynthetic Oxygen Evolving Complex â€. Journal of the Chemical Society Dalton Transactions, 1997, 4069-4074.	with the	41
83	Spectral Resolution of the Split EPR Signals Induced by Illumination at 5 K from the S1, S3, and S0 States in Photosystem II. Biochemistry, 2006, 45, 9279-9290.	1.2	40
84	Synthesis and Characterization of Dinuclear Ruthenium Complexes Covalently Linked to Rull Tris-bipyridine: An Approach to Mimics of the Donor Side of Photosystem II. Chemistry - A European Journal, 2005, 11, 7305-7314.	1.7	39
85	Identification of ligands to the metal ion in copper(II)-activated ribulose 1,5-bisphosphate carboxylase/oxygenase by the use of electron paramagnetic resonance spectroscopy and oxygen-17 labeled ligands. Biochemistry, 1985, 24, 6011-6019.	1.2	38
86	Intramolecular Electron Transfer from Manganese(II) Coordinatively Linked to a Photogenerated Ru(III)â^'Polypyridine Complex:  A Kinetic Analysis. Journal of Physical Chemistry A, 1998, 102, 2512-2518.	1.1	38
87	Synthesis and Photophysics of One Mononuclear Mn(III) and One Dinuclear Mn(III,III) Complex Covalently Linked to a Ruthenium(II) Tris(bipyridyl) Complex. Inorganic Chemistry, 2003, 42, 7502-7511.	1.9	38
88	Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1230-1237.	0.5	38
89	Water oxidation by manganese oxides formed from tetranuclear precursor complexes: the influence of phosphate on structure and activity. Physical Chemistry Chemical Physics, 2014, 16, 11965.	1.3	38
90	Intramolecular electron transfer from coordinated manganese(ii) to photogenerated ruthenium(iii). Chemical Communications, 1997, , 607-608.	2,2	37

#	Article	IF	Citations
91	Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis. Journal of Inorganic Biochemistry, 2004, 98, 733-745.	1.5	36
92	A biomimetic approach to artificial photosynthesis: Ru(II)–polypyridine photo-sensitisers linked to tyrosine and manganese electron donors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2145-2160.	2.0	35
93	Light-Driven Tyrosine Radical Formation in a Rutheniumâ^'Tyrosine Complex Attached to Nanoparticle TiO2. Inorganic Chemistry, 2002, 41, 6258-6266.	1.9	35
94	Metalloradical EPR Signals from the YZ·S·State Intermediates in Photosystem II. Applied Magnetic Resonance, 2010, 37, 151-176.	0.6	35
95	Two tetranuclear Mn-complexes as biomimetic models of the oxygen evolving complex in Photosystem II. A synthesis, characterisation and reactivity study. Dalton Transactions, 2009, , 10044.	1.6	34
96	Interconversion of Low- and High-Potential Forms of Cytochromeb559in Tris-Washed Photosystem II Membranes under Aerobic and Anaerobic Conditions. Biochemistry, 1999, 38, 10578-10584.	1.2	33
97	Formation and flash-dependent oscillation of the S2-state multiline EPR signal in an oxygen-evolving Photosystem-II preparation lacking the three extrinsic proteins in the oxygen-evolving system. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 32-38.	0.5	32
98	Split EPR Signals from Photosystem II Are Modified by Methanol, Reflecting S State-Dependent Binding and Alterations in the Magnetic Coupling in the CaMn4 Cluster. Biochemistry, 2006, 45, 7617-7627.	1.2	30
99	Methanol modification of the electron paramagnetic resonance signals from the SO and S2 states of the water-oxidizing complex of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 240-249.	0.5	28
100	Stepwise Charge Separation from a Rutheniumâ^'Tyrosine Complex to a Nanocrystalline TiO2Film. Journal of Physical Chemistry B, 2004, 108, 12904-12910.	1.2	28
101	Formation Spectra of the EPR Split Signals from the S ₀ , S ₁ , and S ₃ States in Photosystem II Induced by Monochromatic Light at 5 K. Biochemistry, 2007, 46, 10703-10712.	1.2	28
102	Redox Chemistry of a Dimanganese(II,III) Complex with an Unsymmetric Ligand: Water Binding, Deprotonation and Accumulative Light-Induced Oxidation. European Journal of Inorganic Chemistry, 2006, 2006, 5033-5047.	1.0	27
103	The accessory electron donor tyrosine-D of Photosystem II is slowly reduced in the dark during low-temperature storage of isolated thylakoids. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 41-46.	0.5	26
104	Mechanistic Studies on the Water-Oxidizing Reaction of Homogeneous Manganese-Based Catalysts: Isolation and Characterization of a Suggested Catalytic Intermediate. Inorganic Chemistry, 2011, 50, 3425-3430.	1.9	26
105	Comparative studies of the SO and S2 multiline electron paramagnetic resonance signals from the manganese cluster in Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 83-95.	0.5	25
106	Point-Mutations Affecting the Properties of TyrosineD in Photosystem II. Characterization by Isotopic Labeling and Spectral Simulation. Biochemistry, 1994, 33, 11805-11813.	1.2	24
107	Functional Heterogeneity of Photosystem II in Domain Specific Regions of the Thylakoid Membrane of Spinach (Spinacia oleracea L.)â€. Biochemistry, 2007, 46, 3443-3453.	1.2	24
108	Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1463-1471.	0.5	24

#	Article	IF	CITATIONS
109	Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme. Energy and Environmental Science, 2016, 9, 581-594.	15.6	24
110	Synthesis of a Ru(bpy)3-type complex linked to a free terpyridine ligand and its use for preparation of polynuclear bimetallic complexes. Catalysis Today, 2004, 98, 529-536.	2.2	23
111	pH Dependent Competition between YZ and YD in Photosystem II Probed by Illumination at 5 K. Biochemistry, 2007, 46, 7865-7874.	1.2	23
112	Misses during Water Oxidation in Photosystem II Are S State-dependent. Journal of Biological Chemistry, 2012, 287, 13422-13429.	1.6	23
113	The nature of the Fe(III) EPR signal from the acceptor-side iron in photosystem II. FEBS Letters, 1989, 243, 156-160.	1.3	22
114	Redox interaction of Tyrosine-D with the S-states of the water-oxidizing complex in intact and chloride-depleted Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 65-74.	0.5	21
115	Proton Equilibria in the Manganese Cluster of Photosystem II Control the Intensities of the S0and S2Stategâ‰^ 2 Electron Paramagnetic Resonance Signalsâ€. Biochemistry, 2000, 39, 6763-6772.	1.2	21
116	Electron transfer from cytochrome b559 and tyrosineD to the S2 and S3 states of the water oxidizing complex in photosystem II. Chemical Physics, 2003, 294, 415-431.	0.9	21
117	pH Dependence of the Donor Side Reactions in Ca2+-Depleted Photosystem IIâ€. Biochemistry, 2003, 42, 6185-6192.	1.2	19
118	Rhodobacter capsulatus magnesium chelatase subunit BchH contains an oxygen sensitive iron–sulfur cluster. Archives of Microbiology, 2007, 188, 599-608.	1.0	19
119	Effects of pH on the S ₃ State of the Oxygen Evolving Complex in Photosystem II Probed by EPR Split Signal Induction. Biochemistry, 2010, 49, 9800-9808.	1.2	19
120	Direct synthesis of an heterometallic {MnII3CrIII4} wheel by decomposition of Reineckes salt. Dalton Transactions, 2010, 39, 2344.	1.6	18
121	Modeling Photosystem I with the alternative reaction center protein PsaB2 in the nitrogen fixing cyanobacterium Nostoc punctiforme. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1152-1161.	0.5	18
122	Stability of the S ₃ and S ₂ State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry, 2012, 51, 138-148.	1.2	18
123	Distortion of the activator metal coordination during the turnover of cobalt-activated ribulosebisphosphate carboxylase/oxygenase. BBA - Proteins and Proteomics, 1984, 788, 274-280.	2.1	17
124	Mutation of a putative ligand to the non-heme iron in Photosystem II: implications for QA reactivity, electron transfer, and herbicide binding. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 263-272.	0.5	17
125	Logistics in the life cycle of Photosystem II-lateral movement in the thylakoid membrane and activation of electron transfer. Physiologia Plantarum, 2003, 119, 328-336.	2.6	17
126	Oxygen-induced changes in the redox state of the cytochrome b559in photosystem II depend on the integrity of the Mn cluster. Physiologia Plantarum, 2007, 131, 41-49.	2.6	17

#	Article	IF	Citations
127	Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 496-503.	0.5	17
128	The EPR Signals from the S0and S2States of the Mn Cluster in Photosystem II Relax Differentlyâ€. Biochemistry, 1999, 38, 15223-15230.	1.2	16
129	Defining the Far-red Limit of Photosystem I. Journal of Biological Chemistry, 2014, 289, 24630-24639.	1.6	16
130	A comparative study of the reduction of EPR signal IIslowby iodide and the iodo-labeling of the D2-protein in photosystem II. FEBS Letters, 1987, 223, 371-375.	1.3	15
131	Reduced content of the quinone acceptor Q A in photosystem II complexes isolated from thylakoid membranes after prolonged photoinhibition under anaerobic conditions. FEBS Letters, 1993, 327, 343-346.	1.3	15
132	Artificial photosynthesis: Towards functional mimics of photosystem II?. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 193-199.	0.5	15
133	Influence of protein phosphorylation on the electron-transport properties of Photosystem II. Photosynthesis Research, 2002, 74, 61-72.	1.6	15
134	Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme. Physiologia Plantarum, 2007, 131, 622-634.	2.6	15
135	EPR Characterization of Photosystem II from Different Domains of the Thylakoid Membrane. Biochemistry, 2008, 47, 3883-3891.	1.2	15
136	Visible Light Induction of an Electron Paramagnetic Resonance Split Signal in Photosystem II in the S2 State Reveals the Importance of Charges in the Oxygen-Evolving Center during Catalysis: A Unifying Model. Biochemistry, 2012, 51, 2054-2064.	1.2	15
137	Mimicking photosystem II reactions in artificial photosynthesis: Ru(II)-polypyridine photosensitisers linked to tyrosine and manganese electron donors. Catalysis Today, 2000, 58, 57-69.	2.2	14
138	The formation of the split EPR signal from the S3 state of Photosystem II does not involve primary charge separation. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 11-21.	0.5	14
139	Structural, magnetic, thermal and visible light-driven water oxidation studies of heterometallic Mn/V complexes. Polyhedron, 2015, 88, 81-89.	1.0	14
140	A Tandem Mass Spectrometric Method for Singlet Oxygen Measurement. Photochemistry and Photobiology, 2014, 90, 965-971.	1.3	13
141	The S1 split signal of photosystem II; a tyrosine–manganese coupled interaction. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 882-889.	0.5	12
142	The SO State of the Water Oxidizing Complex in Photosystem II: pH Dependence of the EPR Split Signal Induction and Mechanistic Implications. Biochemistry, 2009, 48, 9393-9404.	1.2	12
143	Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis. Australian Journal of Chemistry, 2012, 65, 564.	0.5	12
144	Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme. Journal of Biological Chemistry, 2013, 288, 18345-18352.	1.6	12

#	Article	IF	Citations
145	A Ru–Co hybrid material based on a molecular photosensitizer and a heterogeneous catalyst for light-driven water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 3661.	1.3	12
146	The Photochemistry in Photosystem II at 5 K Is Different in Visible and Far-Red Light. Biochemistry, 2014, 53, 4228-4238.	1.2	12
147	The formation of L-3-phosphoglyceric acid by ribulose-1,5-bisphosphate carboxylase. Biochemical and Biophysical Research Communications, 1980, 92, 1297-1305.	1.0	11
148	Isolation and characterization of oxygen-evolving Photosystem II membranes from the cyanobacterium Synechocystis 6803. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 251-258.	0.5	11
149	Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 205-215.	0.5	11
150	Spin conversion of cytochrome b559 in photosystem II induced by exogenous high potential quinone. Chemical Physics, 2003, 294, 471-482.	0.9	10
151	EPR investigations of synthetic manganese complexes as bio-mimics of the water oxidation complex in photosystem II. Applied Magnetic Resonance, 2007, 31, 301-320.	0.6	10
152	Synthesis and characterisation of low valent Mn-complexes as models for Mn-catalases. Dalton Transactions, 2010, 39, 11035.	1.6	10
153	Consistent simulation of X- and Q-band EPR spectra of an unsymmetric dinuclear Mn2II,III complex. Journal of Inorganic Biochemistry, 2006, 100, 1139-1146.	1.5	9
154	Solar Fuels: Vision and Concepts. Ambio, 2012, 41, 156-162.	2.8	9
155	FTIR Study of Manganese Dimers with Carboxylate Donors As Model Complexes for the Water Oxidation Complex in Photosystem II. Inorganic Chemistry, 2012, 51, 2332-2337.	1.9	9
156	Synthesis, crystal structure, mass spectrometry, electrochemistry and magnetism of a MnIII-substituted trilacunary Keggin tungstosilicate. Dalton Transactions, 2013, 42, 5130.	1.6	9
157	Electron transfer from Cyt b 559 and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. Journal of Bioenergetics and Biomembranes, 2013, 45, 111-120.	1.0	9
158	General discussion summary. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1419-1420.	1.8	8
159	Flash-Induced Relaxation Changes of the EPR Signals from the Manganese Cluster and YDReveal a Light-Adaptation Process of Photosystem IIâ€. Biochemistry, 2003, 42, 2748-2758.	1.2	8
160	Splitting with a difference. Nature Chemistry, 2009, 1, 185-186.	6.6	8
161	Split Electron Paramagnetic Resonance Signal Induction in Photosystem II Suggests Two Binding Sites in the S ₂ State for the Substrate Analogue Methanol. Biochemistry, 2013, 52, 3669-3677.	1.2	8
162	Spectroscopic Evidence for a Redox-Controlled Proton Gate at Tyrosine D in Photosystem II. Biochemistry, 2014, 53, 5721-5723.	1.2	8

#	Article	IF	CITATIONS
163	L-3-Phosphoglyceric acid, formed by ribulose-1,5-bisphosphate carboxylase, is the primary substrate for photorespiration. Biochemical and Biophysical Research Communications, 1980, 92, 1306-1312.	1.0	7
164	Co2+- and Cu2+-incubated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum studied with electron paramagnetic resonance spectroscopy. BBA - Proteins and Proteomics, 1985, 832, 113-118.	2.1	7
165	Relaxation behaviour of the tyrosine YD radical in photosystem II: evidence for strong dipolar interaction with paramagnetic centers in the S1 and S2 states. Physical Chemistry Chemical Physics, 2004, 6, 4890.	1.3	7
166	Synthesis and characterization of a six-coordinate monomeric Mn(III) complex with SOD-like activity. Journal of Coordination Chemistry, 2006, 59, 119-130.	0.8	7
167	ESE relaxation measurements in photosystem II The influence of the reaction center non‐heme iron on the spin‐lattice relaxation of Tyr D FEBS Letters, 1991, 292, 279-283.	1.3	6
168	Enhancement of YD• spin relaxation by the CaMn4 cluster in photosystem II detected at room temperature: A new probe for the S-cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 5-14.	0.5	5
169	Quantitative determination of the Ru(bpy) ₃ ²⁺ cation in photochemical reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Methods, 2014, 6, 8513-8518.	1.3	5
170	EPR studies of ribulose-1,5-bisphosphate carboxylase/oxygenase activated With Cu2+. Inorganica Chimica Acta, 1983, 79, 158-159.	1.2	3
171	Inhibition of glycollate oxidase from parsley leaves by HCO3â^'. Biochemical and Biophysical Research Communications, 1979, 89, 607-611.	1.0	2
172	Title is missing!. Photosynthesis Research, 1998, 58, 231-243.	1.6	2
173	Photoinduced reduction of the medial FeS center in the hydrogenase small subunit HupS from Nostoc punctiforme. Journal of Inorganic Biochemistry, 2015, 148, 57-61.	1.5	1