
Brent A Hanks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3737783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Trials with Biologic Primary Endpoints in Immuno-oncology: Concepts and Usage. Clinical Cancer Research, 2022, 28, 13-22.	7.0	4
2	APOBEC Mutagenesis Inhibits Breast Cancer Growth through Induction of T cell–Mediated Antitumor Immune Responses. Cancer Immunology Research, 2022, 10, 70-86.	3.4	20
3	The "Inside―Story on Tumor-Expressed PD-L1. Cancer Research, 2022, 82, 2069-2071.	0.9	6
4	Ipilimumab and Radiation in Patients with High-risk Resected or Regionally Advanced Melanoma. Clinical Cancer Research, 2021, 27, 1287-1295.	7.0	2
5	Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better?. Clinical Cancer Research, 2021, 27, 1236-1241.	7.0	222
6	Dissecting the immune landscape of tumor draining lymph nodes in melanoma with high-plex spatially resolved protein detection. Cancer Immunology, Immunotherapy, 2021, 70, 475-483.	4.2	6
7	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
8	A case report of microsatellite instability (MSI)-high, HER2 amplified pancreatic adenocarcinoma with central nervous system metastasis. AME Case Reports, 2021, 5, 14-14.	0.6	1
9	Three-year survival, correlates and salvage therapies in patients receiving first-line pembrolizumab for advanced Merkel cell carcinoma. , 2021, 9, e002478.		59
10	Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Reports, 2021, 35, 109071.	6.4	35
11	Overcoming Immunotherapy Resistance by Targeting the Tumor-Intrinsic NLRP3-HSP70 Signaling Axis. Cancers, 2021, 13, 4753.	3.7	9
12	Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. Journal of Clinical Investigation, 2021, 131, .	8.2	40
13	Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nature Cancer, 2020, 1, 1204-1217.	13.2	58
14	SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. , 2020, 8, e000705.		20
15	Higher BMI, But Not Sarcopenia, Is Associated With Pembrolizumab-related Toxicity in Patients With Advanced Melanoma. Anticancer Research, 2020, 40, 5245-5254.	1.1	14
16	The utility of initial staging PET-CT as a baseline scan for surveillance imaging in stage II and III melanoma. Surgical Oncology, 2020, 35, 533-539.	1.6	4
17	Role of dendritic cell metabolic reprogramming in tumor immune evasion. International Immunology, 2020, 32, 485-491.	4.0	11
18	A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti–PD-1 immunotherapy. Journal of Clinical Investigation, 2020, 130, 2570-2586.	8.2	134

BRENT A HANKS

#	Article	IF	CITATIONS
19	425â€Investigation of Wnt ligand signaling regulators as a predictor of Anti-PD-1 response in metastatic melanoma. , 2020, , .		1
20	Retrospective analysis of safety and efficacy of anti-PD-1 therapy and radiation therapy in advanced melanoma: A bi-institutional study. Radiotherapy and Oncology, 2019, 138, 114-120.	0.6	11
21	Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. , 2019, 7, 80.		65
22	Durable Tumor Regression and Overall Survival in Patients With Advanced Merkel Cell Carcinoma Receiving Pembrolizumab as First-Line Therapy. Journal of Clinical Oncology, 2019, 37, 693-702.	1.6	274
23	Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Frontiers in Immunology, 2019, 10, 2876.	4.8	60
24	Updates in adjuvant systemic therapy for melanoma. Journal of Surgical Oncology, 2019, 119, 222-231.	1.7	35
25	Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization. Immunity, 2018, 48, 147-160.e7.	14.3	185
26	Stromal Fibroblasts Mediate Anti–PD-1 Resistance via MMP-9 and Dictate TGFβ Inhibitor Sequencing in Melanoma. Cancer Immunology Research, 2018, 6, 1459-1471.	3.4	81
27	Pilot trial of an Indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor plus a multipeptide melanoma vaccine in patients with advanced melanoma. Journal of Clinical Oncology, 2018, 36, 3033-3033.	1.6	5
28	Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. , 2017, 5, 44.		181
29	Paracrine wnt-β-catenin signaling inhibition as a strategy to enhance the efficacy of anti-PD-1 antibody (Ab) therapy in a transgenic model of melanoma Journal of Clinical Oncology, 2017, 35, 3053-3053.	1.6	4
30	Genetic risk analysis of a patient with fulminant autoimmune type 1 diabetes mellitus secondary to combination ipilimumab and nivolumab immunotherapy. , 2016, 4, 89.		81
31	Safety and Efficacy of Radiation Therapy in Advanced Melanoma Patients Treated With Ipilimumab. International Journal of Radiation Oncology Biology Physics, 2016, 96, 72-77.	0.8	64
32	Isolated recto-sigmoid colitis: a new imaging pattern of ipilimumab-associated colitis. Abdominal Radiology, 2016, 41, 207-214.	2.1	36
33	A Phase II Randomized Study of CDX-1401, a Dendritic Cell Targeting NY-ESO-1 Vaccine, in Patients with Malignant Melanoma Pre-Treated with Recombinant CDX-301, a Recombinant Human Flt3 Ligand Journal of Clinical Oncology, 2016, 34, 9589-9589.	1.6	14
34	Immune evasion pathways and the design of dendritic cell-based cancer vaccines. Discovery Medicine, 2016, 21, 135-42.	0.5	2
35	Rapid complete response of metastatic melanoma in a patient undergoing ipilimumab immunotherapy in the setting of active ulcerative colitis. , 2015, 3, 19.		54
36	Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunology Research, 2015, 3, 1082-1095.	3.4	147

BRENT A HANKS

#	Article	IF	CITATIONS
37	Targeting the Wnt5a-β-catenin pathway in the melanoma microenvironment to augment checkpoint inhibitor immunotherapy Journal of Clinical Oncology, 2015, 33, 3054-3054.	1.6	2
38	Early Carcinogenesis Involves the Establishment of Immune Privilege via Intrinsic and Extrinsic Regulation of Indoleamine 2,3-dioxygenase-1: Translational Implications in Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 438.	4.8	12
39	Immunotherapy Following Regional Chemotherapy Treatment of Advanced Extremity Melanoma. Annals of Surgical Oncology, 2014, 21, 2525-2531.	1.5	13
40	Melanoma-derived Wnt5a conditions dendritic cells to promote regulatory T cell differentiation via the upregulation of indoleamine 2,3-dioxygenase: novel pharmacological strategies for augmenting immunotherapy efficacy. , 2014, 2, P209.		0
41	Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAF ^{V600E} -PTEN-/- transgenic model of melanoma Journal of Clinical Oncology, 2014, 32, 3011-3011.	1.6	25
42	Role of the Wnt-β-catenin signaling pathway in melanoma-mediated dendritic cell tolerization. , 2013, 1, P153.		3
43	Type III TGF-Î ² receptor downregulation generates an immunotolerant tumor microenvironment. Journal of Clinical Investigation, 2013, 123, 3925-3940.	8.2	94
44	Improved Time to Progression for Transarterial Chemoembolization Compared With Transarterial Embolization for Patients With Unresectable Hepatocellular Carcinoma. Clinical Colorectal Cancer, 2012, 11, 185-190.	2.3	15
45	Abstract 3548: Loss of the type III TGF- $\hat{1}^2$ receptor during cancer progression generates an immunotolerant tumor microenvironment: Translational implications for TGF-I ² inhibition and immunotherapy biomarker development. , 2012, , .		0
46	Role of the type III TGF-b receptor in mediating immunosuppression during breast cancer progression Journal of Clinical Oncology, 2010, 28, 10577-10577.	1.6	0
47	Pharmacological inhibition of TCFÎ ² as a strategy to augment the antitumor immune response. Current Opinion in Investigational Drugs, 2010, 11, 1342-53.	2.3	4
48	The efficacy and tolerability of transarterial chemo-embolization (TACE) compared with transarterial embolization (TAE) for patients with unresectable hepatocellular carcinoma (HCC). Journal of Clinical Oncology, 2008, 26, 4595-4595.	1.6	14
49	Enhanced Activation of Human Dendritic Cells by Inducible CD40 and Toll-like Receptor-4 Ligation. Cancer Research, 2007, 67, 10528-10537.	0.9	61
50	425. Translation of Enhanced Dendritic Cell Vaccines Using a CID-Inducible CD40 Receptor. Molecular Therapy, 2006, 13, S163-S164.	8.2	0
51	Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nature Medicine, 2005, 11, 130-137.	30.7	79
52	Templateâ€based docking of a prolactin receptor prolineâ€rich motif octapeptide to FKBP12: Implications for cytokine receptor signaling. Protein Science, 1997, 6, 999-1008.	7.6	6
53	Structural Fluctuations of a Cryptophane Host:Â A Molecular Dynamics Simulation. Journal of the American Chemical Society, 1996, 118, 3237-3246.	13.7	39
54	Comparison of the Functional Differences for the Homologous Residues within the Carboxy Phosphate and Carbamate Domains of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 1996, 35, 14362-14369.	2.5	35

BRENT A HANKS

#	Article	IF	CITATIONS
55	Role of Conserved Residues within the Carboxy Phosphate Domain of Carbamoyl Phosphate Synthetaseâ€. Biochemistry, 1996, 35, 14352-14361.	2.5	61
56	Pharmacological Wnt Ligand Inhibition Overcomes Key Tumor-Mediated Resistance Pathways to Anti-PD-1 Immunotherapy. SSRN Electronic Journal, 0, , .	0.4	0
57	Identification of a Germline Pyrin Variant in a Metastatic Melanoma Patient With Multiple Spontaneous Regressions and Immune-related Adverse Events. Journal of Immunotherapy, 0, Publish Ahead of Print, .	2.4	1