Carol D Blair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3737644/publications.pdf

Version: 2024-02-01

159585 4,523 54 30 citations h-index papers

g-index 55 55 55 4395 docs citations times ranked citing authors all docs

168389

53

#	Article	IF	CITATIONS
1	Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway. PLoS Pathogens, 2009, 5, e1000299.	4.7	395
2	Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4198-4203.	7.1	357
3	RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus;) Tj ETQq1 1 0.784314 United States of America, 2004, 101, 17240-17245.	rgBT /Ove 7.1	erlock 10 Tf 50 307
4	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
5	C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response. PLoS Neglected Tropical Diseases, 2010, 4, e856.	3.0	276
6	Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiology, 2011 , 6 , 265 - 277 .	2.0	214
7	Aedes aegyptiuses RNA interference in defense against Sindbis virus infection. BMC Microbiology, 2008, 8, 47.	3.3	210
8	Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and –Incompetent Mosquito Cells. PLoS Neglected Tropical Diseases, 2010, 4, e848.	3.0	186
9	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
10	La Crosse Bunyavirus Nonstructural Protein NSs Serves To Suppress the Type I Interferon System of Mammalian Hosts. Journal of Virology, 2007, 81, 4991-4999.	3.4	150
11	RNA Silencing of Dengue Virus Type 2 Replication in Transformed C6/36 Mosquito Cells Transcribing an Inverted-Repeat RNA Derived from the Virus Genome. Journal of Virology, 2002, 76, 12925-12933.	3.4	142
12	Dengue Virus RNA Structure Specialization Facilitates Host Adaptation. PLoS Pathogens, 2015, 11, e1004604.	4.7	138
13	The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions. Viruses, 2015, 7, 820-843.	3.3	129
14	Antibody Prophylaxis and Therapy for Flavivirus Encephalitis Infections. Annals of the New York Academy of Sciences, 2001, 951, 286-297.	3.8	118
15	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
16	Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS Pathogens, 2018, 14, e1006853.	4.7	106
17	Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathogens, 2017, 13, e1006265.	4.7	95
18	Arbovirus–mosquito interactions: RNAi pathway. Current Opinion in Virology, 2015, 15, 119-126.	5.4	93

#	Article	IF	CITATIONS
19	Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. Journal of General Virology, 2009, 90, 2660-2668.	2.9	78
20	Studies on overwintering of bluetongue viruses in insects. Journal of General Virology, 2005, 86, 453-462.	2.9	69
21	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
22	Metabolomics-Based Discovery of Small Molecule Biomarkers in Serum Associated with Dengue Virus Infections and Disease Outcomes. PLoS Neglected Tropical Diseases, 2016, 10, e0004449.	3.0	53
23	Bunyavirus superinfection and segment reassortment in transovarially infected mosquitoes. Journal of General Virology, 1999, 80, 3173-3179.	2.9	53
24	Rapid Intraspecific Evolution of miRNA and siRNA Genes in the Mosquito Aedes aegypti. PLoS ONE, 2012, 7, e44198.	2.5	52
25	RNA Structure Duplication in the Dengue Virus 3′ UTR: Redundancy or Host Specificity?. MBio, 2019, 10, .	4.1	51
26	Molecular Strategies for Interrupting Arthropod-Borne Virus Transmission by Mosquitoes. Clinical Microbiology Reviews, 2000, 13, 651-661.	13.6	49
27	Immunization of Mice with Recombinant Mosquito Salivary Protein D7 Enhances Mortality from Subsequent West Nile Virus Infection via Mosquito Bite. PLoS Neglected Tropical Diseases, 2012, 6, e1935.	3.0	47
28	Locking and Blocking the Viral Landscape of an Alphavirus with Neutralizing Antibodies. Journal of Virology, 2014, 88, 9616-9623.	3.4	46
29	The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes. Current Issues in Molecular Biology, 2020, 34, 13-30.	2.4	40
30	A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine, 2012, 30, 3180-3187.	3.8	39
31	Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. Journal of General Virology, 2008, 89, 2651-2661.	2.9	39
32	Mosquito immune responses to arbovirus infections. Current Opinion in Insect Science, 2014, 3, 22-29.	4.4	36
33	Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology, 2011, 414, 146-152.	2.4	28
34	Identification and Sequence Determination of mRNAs Detected in Dormant (Diapausing) Aedes triseriatus Mosquito Embryos. DNA Sequence, 2001, 12, 197-202.	0.7	26
35	A humanized IgG but not IgM antibody is effective in prophylaxis and therapy of yellow fever infection in an AG129/17D-204 peripheral challenge mouse model. Antiviral Research, 2012, 94, 1-8.	4.1	24
36	A "microRNA-like―small RNA expressed by Dengue virus?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2359.	7.1	23

#	Article	IF	Citations
37	Full genomic characterization of California serogroup viruses, genus Orthobunyavirus, family Peribunyaviridae including phylogenetic relationships. Virology, 2017, 512, 201-210.	2.4	22
38	Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine, 2014, 32, 258-264.	3.8	21
39	Bunyavirus Taxonomy: Limitations and Misconceptions Associated with the Current ICTV Criteria Used for Species Demarcation. American Journal of Tropical Medicine and Hygiene, 2018, 99, 11-16.	1.4	21
40	Induction of RNA interference to block Zika virus replication and transmission in the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2019, 111, 103169.	2.7	19
41	Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection. Virology, 2014, 456-457, 238-246.	2.4	18
42	Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito–Arbovirus Arms Race. Frontiers in Genetics, 2019, 10, 1114.	2.3	18
43	Humanized monoclonal antibody 2C9-cIgG has enhanced efficacy for yellow fever prophylaxis and therapy in an immunocompetent animal model. Antiviral Research, 2014, 103, 32-38.	4.1	16
44	Detection of Bluetongue Virus RNA by in Situ Hybridization: Comparison with Virus Isolation and Antigen Detection. Journal of Veterinary Diagnostic Investigation, 1991, 3, 22-28.	1.1	11
45	The effect of mosquito passage on the La Crosse virus genotype. Journal of General Virology, 2001, 82, 2919-2926.	2.9	11
46	Use of in Situ Hybridization with a Biotinylated Probe for the Detection of Bovine Herpesvirus-l in Aborted Fetal Tissue. Journal of Veterinary Diagnostic Investigation, 1989, 1, 231-236.	1.1	8
47	A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 inÂvitro but does not protect a mouse model from disease. Antiviral Research, 2016, 131, 92-99.	4.1	8
48	Detection of Cattle Infected with Bovine Viral Diarrhea Virus Using Nucleic Acid Hybridization. Journal of Veterinary Diagnostic Investigation, 1991, 3, 10-15.	1.1	6
49	Targeting Dengue Virus Replication in Mosquitoes. , 2017, , 201-217.		5
50	A Monoclonal Antibody Specific for Japanese Encephalitis Virus with High Neutralizing Capability for Inclusion as a Positive Control in Diagnostic Neutralization Tests. American Journal of Tropical Medicine and Hygiene, 2019, 101, 233-236.	1.4	5
51	Complete cDNA and Deduced Amino Acid Sequence of the Chaperonin Containing T-Complex Polypeptide 1 (CCT) Delta Subunit from Aedes triseriatus Mosquitoes. DNA Sequence, 2001, 12, 203-208.	0.7	4
52	Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology, 2022, 565, 13-21.	2.4	3
53	Monoclonal antibodies to Cache Valley virus for serological diagnosis. PLoS Neglected Tropical Diseases, 2022, 16, e0010156.	3.0	3
54	Molecular Cloning and Complete cDNA Sequences of the Ribosomal Proteins rpL34 and rpL44 from <i>Aedes Triseriatus</i> Mosquitoes. DNA Sequence, 2000, 11, 451-455.	0.7	0