
Bruce A Julian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/373697/publications.pdf Version: 2024-02-01

RDUCE A LILLAN

#	Article	IF	CITATIONS
1	IgA Nephropathy. New England Journal of Medicine, 2013, 368, 2402-2414.	27.0	936
2	The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1795-1803.	6.1	584
3	Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nature Genetics, 2011, 43, 321-327.	21.4	528
4	Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nature Genetics, 2014, 46, 1187-1196.	21.4	505
5	Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. Journal of Clinical Investigation, 2009, 119, 1668-77.	8.2	356
6	IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nature Genetics, 2000, 26, 354-357.	21.4	291
7	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	12.4	273
8	Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney International, 1997, 52, 509-516.	5.2	266
9	End‣tage Renal Disease in African Americans With Lupus Nephritis Is Associated With <i>APOL1</i> . Arthritis and Rheumatology, 2014, 66, 390-396.	5.6	242
10	Current Understanding of the Role of Complement in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1503-1512.	6.1	236
11	Aberrant IgA1 Glycosylation Is Inherited in Familial and Sporadic IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 1008-1014.	6.1	227
12	IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. Journal of Clinical Investigation, 2008, 118, 629-39.	8.2	217
13	Autoantibodies Targeting Galactose-Deficient IgA1 Associate with Progression of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 1579-1587.	6.1	209
14	APOL1 Genotype and Kidney Transplantation Outcomes From Deceased African American Donors. Transplantation, 2016, 100, 194-202.	1.0	137
15	Cytokines Alter IgA1 O-Glycosylation by Dysregulating C1GalT1 and ST6GalNAc-II Enzymes. Journal of Biological Chemistry, 2014, 289, 5330-5339.	3.4	123
16	The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Frontiers in Immunology, 2016, 7, 117.	4.8	123
17	Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatric Nephrology, 2007, 22, 2067-2072.	1.7	122
18	Interactions of human mesangial cells with IgA and IgA-containing immune complexes1. Kidney International, 2002, 62, 465-475.	5.2	117

BRUCE A JULIAN

#	Article	IF	CITATIONS
19	Oxidative Stress and Galactose-Deficient IgA1 as Markers of Progression in IgA Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1903-1911.	4.5	102
20	The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Frontiers in Immunology, 2019, 10, 504.	4.8	100
21	Progress in molecular and genetic studies of IgA nephropathy. Journal of Clinical Immunology, 2001, 21, 310-327.	3.8	98
22	A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases. PLoS ONE, 2014, 9, e98081.	2.5	93
23	GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genetics, 2017, 13, e1006609.	3.5	92
24	Secondary IgA nephropathy. Kidney International, 2018, 94, 674-681.	5.2	79
25	TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6–mediated pathways in IgA nephropathy. Kidney International, 2020, 97, 340-349.	5.2	78
26	Galactose-Deficient IgA1 in African Americans with IgA Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2069-2074.	4.5	73
27	Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics - Clinical Applications, 2009, 3, 1029-1043.	1.6	66
28	Aberrant Glycosylation of the IgA1 Molecule in IgA Nephropathy. Seminars in Nephrology, 2018, 38, 461-476.	1.6	61
29	Genome-wide association studies suggest that APOL1-environment interactions more likely trigger kidney disease in African Americans with nondiabetic nephropathy than strong APOL1–second gene interactions. Kidney International, 2018, 94, 599-607.	5.2	58
30	Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opinion on Medical Diagnostics, 2013, 7, 615-627.	1.6	55
31	lgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrology Dialysis Transplantation, 2006, 21, 2478-2484.	0.7	50
32	Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney International Reports, 2017, 2, 1194-1207.	0.8	49
33	Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases. World Journal of Urology, 2007, 25, 467-476.	2.2	48
34	Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study. Kidney International Reports, 2018, 3, 1373-1384.	0.8	39
35	Galactose-Deficient IgA1 as a Candidate Urinary Polypeptide Marker of IgA Nephropathy?. Disease Markers, 2016, 2016, 1-6.	1.3	32
36	Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. Journal of Clinical Medicine, 2021, 10, 4501.	2.4	30

BRUCE A JULIAN

#	Article	IF	CITATIONS
37	Should kidney donors be genotyped for APOL1 risk alleles?. Kidney International, 2015, 87, 671-673.	5.2	29
38	N-Acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrology Dialysis Transplantation, 2015, 30, 234-238.	0.7	29
39	Enzymatic Sialylation of IgA1 O-Glycans: Implications for Studies of IgA Nephropathy. PLoS ONE, 2014, 9, e99026.	2.5	28
40	Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 3278-3284.	6.1	27
41	Life Expectancy for Patients From the Southeastern United States With IgA Nephropathy. Kidney International Reports, 2018, 3, 99-104.	0.8	27
42	Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Diseases (Basel, Switzerland), 2020, 6, 168-180.	2.5	26
43	Population Health, Ethnicity, and Rate of Living Donor Kidney Transplantation. Transplantation, 2018, 102, 2080-2087.	1.0	25
44	Cellular Signaling and Production of Galactose-Deficient IgA1 in IgA Nephropathy, an Autoimmune Disease. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	24
45	Apolipoprotein L1 Gene Effects on Kidney Transplantation. Seminars in Nephrology, 2017, 37, 530-537.	1.6	23
46	Autoantibodies Specific for Galactose-Deficient IgA1 in IgA Vasculitis With Nephritis. Kidney International Reports, 2019, 4, 1717-1724.	0.8	22
47	Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study. Disease Markers, 2016, 2016, 1-9.	1.3	21
48	Pathogenesis of immunoglobulin A nephropathy. Current Opinion in Nephrology and Hypertension, 2013, 22, 287-294.	2.0	20
49	Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation. Kidney International, 2015, 88, 584-592.	5.2	18
50	Serum Galactose-Deficient IgA1 Level Is Not Associated with Proteinuria in Children with IgA Nephropathy. International Journal of Nephrology, 2012, 2012, 1-7.	1.3	17
51	Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy. Frontiers in Immunology, 2020, 11, 267.	4.8	16
52	Genomeâ€wide association study for time to failure of kidney transplants from African American deceased donors. Clinical Transplantation, 2020, 34, e13827.	1.6	13
53	Deceased-Donor Apolipoprotein L1 Renal-Risk Variants Have Minimal Effects on Liver Transplant Outcomes. PLoS ONE, 2016, 11, e0152775.	2.5	12
54	IgA Nephropathy: A Clinical Overview. , 2007, 157, 19-26.		11

BRUCE A JULIAN

#	Article	IF	CITATIONS
55	Evaluation of Potential Living Kidney Donors in the APOL1 Era. Journal of the American Society of Nephrology: JASN, 2018, 29, 1079-1081.	6.1	11
56	Serial Galactose-Deficient IgA1 Levels in Children with IgA Nephropathy and Healthy Controls. International Journal of Nephrology, 2017, 2017, 1-5.	1.3	8
57	Pathogenic potential of galactoseâ€deficient IgA1 in IgA nephropathy. Nephrology, 2002, 7, S92.	1.6	7
58	Immune profile of IgA-dominant diffuse proliferative glomerulonephritis. CKJ: Clinical Kidney Journal, 2014, 7, 479-483.	2.9	5
59	Assay for galactose-deficient IgA1 enables mechanistic studies with primary cells from IgA nephropathy patients. BioTechniques, 2018, 65, 71-77.	1.8	5
60	Treatment options in IgA nephropathy. Nephrology, 1997, 3, 103-108.	1.6	3
61	IgA Vasculitis with Nephritis in Adults: Histological and Clinical Assessment. Journal of Clinical Medicine, 2021, 10, 4851.	2.4	3
62	Employment status at transplant influences ethnic disparities in outcomes after deceased donor kidney transplantation. BMC Nephrology, 2022, 23, 6.	1.8	3
63	Late Expression of Tumor Necrosis Factor-α IS Markedly Depressed in Patients with IGA Nephropathy. Immunological Investigations, 1998, 27, 243-255.	2.0	1
64	Clinicopathologic Findings. , 2009, , 83-106.		0