Sorina C Popescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/373571/publications.pdf

Version: 2024-02-01

32 papers 1,511 citations

623734 14 h-index 28 g-index

35 all docs 35 docs citations

35 times ranked 2361 citing authors

#	Article	IF	CITATIONS
1	MAPK target networks in <i>Arabidopsis thaliana</i> revealed using functional protein microarrays. Genes and Development, 2009, 23, 80-92.	5.9	438
2	Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4730-4735.	7.1	369
3	Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science, 2015, 3, .	3.3	153
4	<i>Arabidopsis</i> RTNLB1 and RTNLB2 Reticulon-Like Proteins Regulate Intracellular Trafficking and Activity of the FLS2 Immune Receptor Â. Plant Cell, 2011, 23, 3374-3391.	6.6	76
5	<scp>ABC</scp> transporter <scp>PEN</scp> 3/ <scp>PDR</scp> 8/ <scp>ABCG</scp> 36 interacts with calmodulin that, like <scp>PEN</scp> 3, is required for Arabidopsis nonhost resistance. New Phytologist, 2016, 209, 294-306.	7.3	67
6	The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for Innate Immunity and Abiotic Stress Response. Plant Physiology, 2016, 171, pp.00035.2016.	4.8	59
7	Silencing of ribosomal protein L3 genes inN. tabacumreveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant Journal, 2004, 39, 29-44.	5.7	42
8	The <scp>A</scp> rabidopsis oligopeptidases <scp>TOP</scp> 1 and <scp>TOP</scp> 2 are salicylic acid targets that modulate <scp>SA</scp> â€mediated signaling and the immune response. Plant Journal, 2013, 76, 603-614.	5.7	41
9	The Arabidopsis thaliana Knockout Mutant for Phytochelatin Synthase1 (cad1-3) Is Defective in Callose Deposition, Bacterial Pathogen Defense and Auxin Content, But Shows an Increased Stem Lignification. Frontiers in Plant Science, 2018, 9, 19.	3.6	35
10	Arabidopsis Protein Microarrays for the High-Throughput Identification of Protein-Protein Interactions. Plant Signaling and Behavior, 2007, 2, 416-420.	2.4	30
11	The Tomato Kinome and the Tomato Kinase Library ORFeome: Novel Resources for the Study of Kinases and Signal Transduction in Tomato and <i>Solanaceae</i> Species. Molecular Plant-Microbe Interactions, 2014, 27, 7-17.	2.6	30
12	Proteome-Wide Analysis of Cysteine Reactivity during Effector-Triggered Immunity. Plant Physiology, 2019, 179, 1248-1264.	4.8	26
13	Insights into the Structure, Function, and Ion-Mediated Signaling Pathways Transduced by Plant Integrin-Linked Kinases. Frontiers in Plant Science, 2017, 8, 376.	3.6	21
14	Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics. BMC Bioinformatics, 2019, 20, 102.	2.6	16
15	Integrated analysis of co-expressed MAP kinase substrates in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2009, 4, 524-527.	2.4	13
16	Proteomics and Proteogenomics Analysis of Sweetpotato (<i>Ipomoea batatas</i>) Leaf and Root. Journal of Proteome Research, 2019, 18, 2719-2734.	3.7	13
17	Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways. Frontiers in Plant Science, 2015, 6, 327.	3.6	12
18	A Model for the Biosynthesis and Transport of Plasma Membrane-Associated Signaling Receptors to the Cell Surface. Frontiers in Plant Science, 2012, 3, 71.	3.6	10

#	Article	IF	CITATIONS
19	Integrative network-centric approach reveals signaling pathways associated with plant resistance and susceptibility to Pseudomonas syringae. PLoS Biology, 2018, 16, e2005956.	5.6	10
20	Next-generation plant science: putting big data to work. Genome Biology, 2014, 15, 301.	9.6	8
21	Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics. Methods in Molecular Biology, 2016, 1415, 533-547.	0.9	8
22	Experimental and Analytical Approaches to Characterize Plant Kinases Using Protein Microarrays. Methods in Molecular Biology, 2014, 1171, 217-235.	0.9	6
23	Multispecies genome-wide analysis defines the MAP3K gene family in Gossypium hirsutum and reveals conserved family expansions. BMC Bioinformatics, 2019, 20, 99.	2.6	5
24	Profiling thimet oligopeptidaseâ€mediated proteolysis in Arabidopsis thaliana. Plant Journal, 2021, 106, 336-350.	5.7	5
25	Arabidopsis thimet oligopeptidases are redox-sensitive enzymes active in the local and systemic plant immune response. Journal of Biological Chemistry, 2021, 296, 100695.	3.4	5
26	Protein networks – A driving force for discovery in plant science. Current Plant Biology, 2016, 5, 1.	4.7	4
27	Metagenomic Analyses of the Soybean Root Mycobiome and Microbiome Reveal Signatures of the Healthy and Diseased Plants Affected by Taproot Decline. Microorganisms, 2022, 10, 856.	3.6	4
28	Methods for Optimization of Protein Extraction and Proteogenomic Mapping in Sweet Potato. Methods in Molecular Biology, 2020, 2139, 309-324.	0.9	3
29	Complexity and Modularity of MAPK Signaling Networks. , 2011, , 355-368.		2
30	Report on the annual meeting of the working groups †Mycology†and †Host-Parasite-Interactions†of the German Scientific Society for Plant Protection and Plant Health r. S Journal of Plant Diseases and Protection, 2014, 121, 229-233.	2.9	0
31	Profiling Thimet Oligopeptidaseâ€Mediated Proteolysis in <i>Arabidopsis thaliana</i> . FASEB Journal, 2021, 35, .	0.5	0
32	Complexity and Modularity of MAPK Signaling Networks. , 0, , 676-689.		0