Karen E Sheppard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma. Nature Communications, 2022, 13, 1100.	12.8	8
2	Harnessing the immunotherapeutic potential of CDK4/6 inhibitors in melanoma: is timing everything?. Npj Precision Oncology, 2022, 6, 26.	5.4	13
3	The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. British Journal of Cancer, 2021, 124, 616-627.	6.4	26
4	Combined BRAF, MEK, and CDK4/6 Inhibition Depletes Intratumoral Immune-Potentiating Myeloid Populations in Melanoma. Cancer Immunology Research, 2021, 9, 136-146.	3.4	12
5	CDK4/6 Inhibition Reprograms Mitochondrial Metabolism in BRAFV600 Melanoma via a p53 Dependent Pathway. Cancers, 2021, 13, 524.	3.7	8
6	Immunomodulatory Effects of BRAF, MEK, and CDK4/6 Inhibitors: Implications for Combining Targeted Therapy and Immune Checkpoint Blockade for the Treatment of Melanoma. Frontiers in Immunology, 2021, 12, 661737.	4.8	29
7	CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discovery, 2021, 11, 2582-2601.	9.4	62
8	ls resistance to targeted therapy in cancer inevitable?. Cancer Cell, 2021, 39, 1047-1049.	16.8	10
9	PRMT5: An Emerging Target for Pancreatic Adenocarcinoma. Cancers, 2021, 13, 5136.	3.7	11
10	Metabolic Plasticity in Melanoma Progression and Response to Oncogene Targeted Therapies. Cancers, 2021, 13, 5810.	3.7	14
11	Enhancing Adoptive Cell Transfer with Combination BRAF-MEK and CDK4/6 Inhibitors in Melanoma. Cancers, 2021, 13, 6342.	3.7	4
12	Genome-wide RNAi screen for genes regulating glycolytic response to vemurafenib in BRAFV600 melanoma cells. Scientific Data, 2020, 7, 339.	5.3	1
13	rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Frontiers in Cell and Developmental Biology, 2020, 8, 568.	3.7	15
14	CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nature Communications, 2020, 11, 2641.	12.8	90
15	Obesity and the Impact on Cutaneous Melanoma: Friend or Foe?. Cancers, 2020, 12, 1583.	3.7	29
16	Regulation of PRMT5–MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17990-18000.	7.1	81
17	CDK4/6 inhibition in cancer: the cell cycle splicing connection. Molecular and Cellular Oncology, 2019, 6, e1673643.	0.7	5
18	First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discovery, 2019, 9, 1036-1049.	9.4	129

KAREN E SHEPPARD

#	Article	IF	CITATIONS
19	A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Scientific Reports, 2019, 9, 1225.	3.3	16
20	Abstract A061: Targeting PRMT5 enhances the response to CDK4/6 inhibitors in multiple cancer types. , 2019, , .		0
21	Palbociclib synergizes with BRAF and MEK inhibitors in treatment naÃ ⁻ ve melanoma but not after the development of BRAF inhibitor resistance. International Journal of Cancer, 2018, 142, 2139-2152.	5.1	56
22	Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription. Gene, 2017, 612, 36-48.	2.2	14
23	Abstract A24: A genome-wide RNAi screen identifies synthetic lethality of CX-5461 with homologous recombination repair deficiency in ovarian cancer. , 2017, , .		Ο
24	Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget, 2016, 7, 46492-46508.	1.8	40
25	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	1.8	93
26	Abstract 2826: Sustained melanoma regression is achieved with continuous palbociclib and PLX4720 treatment but not with intermittent or sequential dosing. , 2016, , .		1
27	Enhanced <i>GAB2</i> Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1495-1503.	4.1	26
28	Unexpected role of CDK4 in a G2/M checkpoint. Cell Cycle, 2015, 14, 1351-1352.	2.6	5
29	The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Science Signaling, 2015, 8, ra82.	3.6	114
30	Whole exome sequencing identifies a recurrent <i>RQCD1</i> P131L mutation in cutaneous melanoma. Oncotarget, 2015, 6, 1115-1127.	1.8	40
31	Abstract B05: Targeting BRAF and CDK4 in BRAF mutant melanoma induces sustained tumor regression. , 2015, , .		0
32	Abstract 3089: CDKN2A and p53 status predicts response to CDK4/6 inhibition in melanoma. , 2015, , .		0
33	Abstract 2687: Receptor tyrosine kinases can mediate compensatory signaling and phenotype-switching associated with resistance to BRAF inhibitors. , 2015, , .		0
34	Loss of <i><scp>CDKN</scp>2A</i> expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the <scp>CDK</scp> 4/6 inhibitor <scp>PD</scp> 0332991 in melanoma cell lines. Pigment Cell and Melanoma Research, 2014, 27, 590-600.	3.3	165
35	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	9.4	242
36	Abstract 2718: Targeting ribosome biogenesis with CX5461 as a potential treatment for melanoma and ovarian cancer. , 2014, , .		0

KAREN E SHEPPARD

#	Article	IF	CITATIONS
37	The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 2013, 19, 5320-5328.	7.0	226
38	Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. European Journal of Cancer, 2013, 49, 3936-3944.	2.8	72
39	Functional Analysis of Genes in Regions Commonly Amplified in High-Grade Serous and Endometrioid Ovarian Cancer. Clinical Cancer Research, 2013, 19, 1411-1421.	7.0	52
40	Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours. Scientific Reports, 2013, 3, 3494.	3.3	44
41	AKT-independent PI3-K signaling in cancer – emerging role for SGK3. Cancer Management and Research, 2013, 5, 281.	1.9	73
42	Abstract 3416: Genomic alterations of the CDK4-pathway in melanoma and evaluation of the CDK4 Inhibitor PD-0332991 , 2013, , .		2
43	LRP1B Deletion in High-Grade Serous Ovarian Cancers Is Associated with Acquired Chemotherapy Resistance to Liposomal Doxorubicin. Cancer Research, 2012, 72, 4060-4073.	0.9	100
44	Targeting PI3 Kinase/AKT/mTOR Signaling in Cancer. Critical Reviews in Oncogenesis, 2012, 17, 69-95.	0.4	204
45	An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. Journal of Clinical Investigation, 2012, 122, 553-557.	8.2	174
46	Clinical significance of genomic alterations of the CDK4-pathway and sensitivity to the CDK4 inhibitor PD 0332991 in melanoma Journal of Clinical Oncology, 2012, 30, 8520-8520.	1.6	10
47	Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers. PLoS ONE, 2011, 6, e18064.	2.5	172
48	AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer. Science Signaling, 2011, 4, ra56.	3.6	126
49	Abstract 4289: Using the right tools: A catalog of ovarian cancer cell lines by subtype. , 2011, , .		0
50	Second AKT: The rise of SGK in cancer signalling. Growth Factors, 2010, 28, 394-408.	1.7	127
51	Abstract 4130: Genomic profiling of ovarian tumor cell lines provides a predictive signature of sensitivity to PF-4691502, a dual PI3kinase and mTOR inhibitor. , 2010, , .		0
52	Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: A possible role for SGK1. Cardiovascular Research, 2006, 70, 555-565.	3.8	60
53	Regression of pressure overload-induced left ventricular hypertrophy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2702-H2707.	3.2	79
54	UTP Transactivates Epidermal Growth Factor Receptors and Promotes Cardiomyocyte Hypertrophy Despite Inhibiting Transcription of the Hypertrophic Marker Gene, Atrial Natriuretic Peptide. Journal of Biological Chemistry, 2004, 279, 8740-8746.	3.4	29

KAREN E SHEPPARD

#	Article	IF	CITATIONS
55	Corticosteroid Receptors, $11\hat{1}^2$ -Hydroxysteroid Dehydrogenase, and the Heart. Vitamins and Hormones, 2003, 66, 77-112.	1.7	27
56	11β-Hydroxysteroid Dehydrogenase 1 Transforms 11-Dehydrocorticosterone into Transcriptionally Active Glucocorticoid in Neonatal Rat Heart. Endocrinology, 2002, 143, 198-204.	2.8	65
57	ll. Intestinal corticosteroid receptors. American Journal of Physiology - Renal Physiology, 2002, 282, G742-G746.	3.4	26
58	11Â-Hydroxysteroid Dehydrogenase 1 Transforms 11-Dehydrocorticosterone into Transcriptionally Active Glucocorticoid in Neonatal Rat Heart. Endocrinology, 2002, 143, 198-204.	2.8	15
59	Novel nuclear corticosteroid binding in rat small intestinal epithelia. American Journal of Physiology - Renal Physiology, 2000, 279, G536-G542.	3.4	5
60	Corticosteroid receptors and 11β-hydroxysteroid dehydrogenase isoforms in rat intestinal epithelia. American Journal of Physiology - Renal Physiology, 1999, 277, G541-G547.	3.4	15
61	The type I and type II 11β-hydroxysteroid dehydrogenase enzymes. Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 391-401.	2.5	122
62	Decreased apparent affinity of corticosterone for colonic crypt glucocorticoid receptors is dependent on the cellular milieu and is distinct from corticosterone metabolism. Journal of Steroid Biochemistry and Molecular Biology, 1998, 64, 35-42.	2.5	10
63	Steroid specificity of the putative DHB receptor: evidence that the receptor is not 11βHSD. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E124-E131.	3.5	4
64	cAMP modulates glucocorticoid-induced protein accumulation and glucocorticoid receptor in cardiomyocytes. American Journal of Physiology - Endocrinology and Metabolism, 1996, 271, E827-E833.	3.5	6
65	Specific nuclear localization of 11-dehydrocorticosterone in rat colon: evidence for a novel corticosteroid receptor Endocrinology, 1996, 137, 3274-3278.	2.8	12
66	Specific nuclear localization of 11-dehydrocorticosterone in rat colon: evidence for a novel corticosteroid receptor. Endocrinology, 1996, 137, 3274-3278.	2.8	5
67	Cyclosporin A and FK506 are Potent Activators of Proopiomelanocortin-Derived Peptide Secretion Without Affecting Corticotrope Glucocorticoid Receptor Function. Journal of Neuroendocrinology, 1995, 7, 833-840.	2.6	9
68	Glucocorticoid receptor expression is down-regulated by Lp(a) lipoprotein in vascular smooth muscle cells Endocrinology, 1995, 136, 3707-3713.	2.8	13
69	Glucocorticoid receptor expression is down-regulated by Lp(a) lipoprotein in vascular smooth muscle cells. Endocrinology, 1995, 136, 3707-3713.	2.8	5
70	Calcium and protein kinase C regulation of the glucocorticoid receptor in mouse corticotrope tumor cells. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 337-345.	2.5	8
71	Glucocorticoid Receptor Function in Rat Pituitary Intermediate Lobe is Inhibited by an Endogenous Protein. Journal of Neuroendocrinology, 1993, 5, 195-200.	2.6	9
72	Corticotrope responsiveness to glucocorticoids is modulated via rapid CRF-mediated induction of the proto-oncogene c-fos. Molecular and Cellular Endocrinology, 1993, 94, 111-119.	3.2	25

#	Article	IF	Citations
73	Adrenocorticotropin-Releasing Factor Down-Regulates Glucocorticoid Receptor Expression in Mouse Corticotrope Tumor Cells via an Adenylate Cyclase-Dependent Mechanism*. Endocrinology, 1991, 129, 663-670.	2.8	23
74	Differential Regulation of Type II Corticosteroid Receptor Messenger Ribonucleic Acid Expression in the Rat Anterior Pituitary and Hippocampus*. Endocrinology, 1990, 127, 431-439.	2.8	43
75	Adrenocortical Steroids and the Brain. Annual Review of Physiology, 1987, 49, 397-411.	13.1	132
76	Equivalent affinity of aldosterone and corticosterone for type I receptors in kidney and hippocampus: Direct binding studies. The Journal of Steroid Biochemistry, 1987, 28, 737-742.	1.1	65
77	Mineralocorticoid specificity of renal type I receptors: in vivo binding studies. American Journal of Physiology - Endocrinology and Metabolism, 1987, 252, E224-E229.	3.5	21
78	Type I receptors in parotid, colon, and pituitary are aldosterone selective in vivo. American Journal of Physiology - Endocrinology and Metabolism, 1987, 253, E467-E471.	3.5	18
79	Cortisol 17β acid, transcortin, and the heterogeneity of rat brain glucocorticoid receptors. The Journal of Steroid Biochemistry, 1986, 25, 285-288.	1.1	9
80	ON THE MECHANISM OF ACTION OF ALDOSTERONE. Proceedings of the National Academy of Sciences of the United States of America, 1969, 64, 330-337.	7.1	29