Xiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3734994/publications.pdf

Version: 2024-02-01

236912 233409 2,433 45 48 25 citations h-index g-index papers 53 53 53 3099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chemical Biology, 2023, 18, 994-1013.	3.4	21
2	Roles of Negatively Charged Histone Lysine Acylations in Regulating Nucleosome Structure and Dynamics. Frontiers in Molecular Biosciences, 2022, 9, 899013.	3.5	4
3	Lysine succinylation on non-histone chromosomal protein HMG-17 (HMGN2) regulates nucleosomal DNA accessibility by disrupting the HMGN2–nucleosome association. RSC Chemical Biology, 2021, 2, 1257-1262.	4.1	4
4	A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Molecular Cell, 2021, 81, 2669-2681.e9.	9.7	39
5	AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Research, 2021, 49, 9755-9767.	14.5	6
6	Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey. Accounts of Chemical Research, 2021, 54, 3734-3747.	15.6	17
7	Protocol for the preparation of site-specific succinylated histone mimics to investigate the impact on nucleosome dynamics. STAR Protocols, 2021, 2, 100604.	1.2	0
8	Concise solid-phase synthesis enables derivatisation of YEATS domain cyclopeptide inhibitors for improved cellular uptake. Bioorganic and Medicinal Chemistry, 2021, 45, 116342.	3.0	9
9	Chemoproteomic approach for mapping binding sites of post-translational-modification-mediated protein–protein interactions. Trends in Biochemical Sciences, 2021, 46, 1030-1031.	7.5	0
10	A bifunctional amino acid to study protein–protein interactions. RSC Advances, 2020, 10, 42076-42083.	3.6	8
11	Biomimetic \hat{l}_{\pm} -selective ribosylation enables two-step modular synthesis of biologically important ADP-ribosylated peptides. Nature Communications, 2020, 11, 5600.	12.8	13
12	Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Research, 2020, 48, 9538-9549.	14.5	34
13	Selective Targeting of AF9 YEATS Domain by Cyclopeptide Inhibitors with Preorganized Conformation. Journal of the American Chemical Society, 2020, 142, 21450-21459.	13.7	25
14	Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano, 2020, 14, 3272-3280.	14.6	25
15	Editorial overview: Recent advance in chemical genetics and chemical epigenetics. Current Opinion in Chemical Biology, 2019, 51, A1-A3.	6.1	0
16	Glutarylation of Histone H4 Lysine 91 Regulates Chromatin Dynamics. Molecular Cell, 2019, 76, 660-675.e9.	9.7	112
17	Chemical Proteomic Profiling of Bromodomains Enables the Wide-Spectrum Evaluation of Bromodomain Inhibitors in Living Cells. Journal of the American Chemical Society, 2019, 141, 11497-11505.	13.7	21
18	Thermodynamic insights into an interaction between ACYL-CoA–BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. Journal of Biological Chemistry, 2019, 294, 6214-6226.	3.4	24

#	Article	IF	CITATIONS
19	Interrogating Interactions and Modifications of Histones in Live Cells. Cell Chemical Biology, 2018, 25, 1-3.	5.2	48
20	Site-Specific Installation of Succinyl Lysine Analog into Histones Reveals the Effect of H2BK34 Succinylation on Nucleosome Dynamics. Cell Chemical Biology, 2018, 25, 166-174.e7.	5.2	42
21	Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking. Nature Chemical Biology, 2018, 14, 1140-1149.	8.0	76
22	DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. Journal of the American Chemical Society, 2018, 140, 15859-15867.	13.7	83
23	A chemical reporter facilitates the detection and identification of lysine HMGylation on histones. Chemical Science, 2018, 9, 7797-7801.	7.4	11
24	Metabolic Labeling of Pseudaminic Acid-Containing Glycans on Bacterial Surfaces. ACS Chemical Biology, 2018, 13, 3030-3037.	3.4	41
25	Peptide-based approaches to identify and characterize proteins that recognize histone post-translational modifications. Chinese Chemical Letters, 2018, 29, 1051-1057.	9.0	11
26	Genetically Encoded Photoaffinity Histone Marks. Journal of the American Chemical Society, 2017, 139, 6522-6525.	13.7	55
27	Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2. ACS Chemical Biology, 2017, 12, 47-51.	3.4	24
28	Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. Journal of Biological Chemistry, 2017, 292, 12296-12310.	3.4	6
29	Photo-lysine captures proteins that bind lysine post-translational modifications. Nature Chemical Biology, 2016, 12, 70-72.	8.0	77
30	Integrative Chemical Biology Approaches for Identification and Characterization of "Erasers―for Fattyâ€Acidâ€Acylated Lysine Residues within Proteins. Angewandte Chemie - International Edition, 2015, 54, 1149-1152.	13.8	62
31	Developing diazirine-based chemical probes to identify histone modification â€readers' and â€erasers'. Chemical Science, 2015, 6, 1011-1017.	7.4	56
32	Chemical proteomics approaches to examine novel histone posttranslational modifications. Current Opinion in Chemical Biology, 2015, 24, 80-90.	6.1	22
33	ldentification of  erasers' for lysine crotonylated histone marks using a chemical proteomics approach. ELife, 2014, 3, .	6.0	237
34	A Chemical Probe for Lysine Malonylation. Angewandte Chemie - International Edition, 2013, 52, 4883-4886.	13.8	64
35	Examining postâ€translational modificationâ€mediated protein–protein interactions using a chemical proteomics approach. Protein Science, 2013, 22, 287-295.	7.6	33
36	Rücktitelbild: A Chemical Probe for Lysine Malonylation (Angew. Chem. 18/2013). Angewandte Chemie, 2013, 125, 5056-5056.	2.0	0

#	Article	IF	CITATION
37	Dense Chromatin Activates Polycomb Repressive Complex 2 to Regulate H3 Lysine 27 Methylation. Science, 2012, 337, 971-975.	12.6	240
38	Quantitative Chemical Proteomics Approach To Identify Post-translational Modification-Mediated Protein–Protein Interactions. Journal of the American Chemical Society, 2012, 134, 1982-1985.	13.7	114
39	A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells. PLoS ONE, 2012, 7, e34694.	2.5	64
40	Examining the Mechanism of Action of a Kinesin Inhibitor Using Stable Isotope Labeled Inhibitors for Cross-Linking (SILIC). Journal of the American Chemical Society, 2011, 133, 12386-12389.	13.7	11
41	An Optical Switch for a Motor Protein. ChemBioChem, 2011, 12, 2265-2266.	2.6	0
42	Approach to Profile Proteins That Recognize Post-Translationally Modified Histone "Tails― Journal of the American Chemical Society, 2010, 132, 2504-2505.	13.7	46
43	Synthetic Chloride Channel Regulates Cell Membrane Potentials and Voltage-Gated Calcium Channels. Journal of the American Chemical Society, 2009, 131, 13676-13680.	13.7	90
44	\hat{l}_{\pm} -Aminoxy Acids: New Possibilities from Foldamers to Anion Receptors and Channels. Accounts of Chemical Research, 2008, 41, 1428-1438.	15.6	183
45	A Small Synthetic Molecule Forms Chloride Channels to Mediate Chloride Transport across Cell Membranes. Journal of the American Chemical Society, 2007, 129, 7264-7265.	13.7	106
46	Peptides of aminoxy acids as foldamers. Chemical Communications, 2006, , 3367.	4.1	103
47	A Cyclic Hexapeptide Comprising Alternating \hat{l} ±-Aminoxy and \hat{l} ±-Amino Acids is a Selective Chloride Ion Receptor. Chemistry - A European Journal, 2005, 11, 3005-3009.	3.3	30
48	Enantioselective Recognition of Carboxylates: A Receptor Derived from α-Aminoxy Acids Functions as a Chiral Shift Reagent for Carboxylic Acids. Journal of the American Chemical Society, 2005, 127, 7996-7997.	13.7	117