
Kozo Hamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3734221/publications.pdf Version: 2024-02-01

Κοζο Ηλμλολ

#	Article	IF	CITATIONS
1	Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death and Differentiation, 2022, 29, 788-805.	11.2	41
2	A non-canonical role for pyruvate kinase M2 as a functional modulator of Ca2+ signalling through IP3 receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119206.	4.1	9
3	IP ₃ Receptor Plasticity Underlying Diverse Functions. Annual Review of Physiology, 2020, 82, 151-176.	13.1	31
4	Type 3 Inositol 1,4,5-Trisphosphate Receptor is a Crucial Regulator of Calcium Dynamics Mediated by Endoplasmic Reticulum in HEK Cells. Cells, 2020, 9, 275.	4.1	15
5	Ouabainâ€regulated phosphoproteome reveals molecular mechanisms for Na ⁺ , K ⁺ â€ATPase control of cell adhesion, proliferation, and survival. FASEB Journal, 2019, 33, 10193-10206.	0.5	17
6	Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cellular and Molecular Life Sciences, 2019, 76, 3843-3859.	5.4	31
7	New Insights into the Gating Mechanism of the IP ₃ Receptor. Messenger (Los Angeles,) Tj ETQq1 1	0.784314 0.3	rgBT /Overlo
8	Ca2+ signaling and spinocerebellar ataxia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1733-1744.	4.1	28
9	IP ₃ -mediated gating mechanism of the IP ₃ receptor revealed by mutagenesis and X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4661-4666.	7.1	70
10	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
11	Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3966-75.	7.1	40
12	Distinct roles of M1 and M3 muscarinic acetylcholine receptors controlling oscillatory and non-oscillatory [Ca2+]i increase. Cell Calcium, 2013, 54, 111-119.	2.4	12
13	A fluorescence-based assay for the measurement of S-adenosylhomocysteine hydrolase activity in biological samples. Analytical Biochemistry, 2013, 433, 95-101.	2.4	9
14	Revisiting Channel Allostery: A Coherent Mechanism in IP ₃ and Ryanodine Receptors. Science Signaling, 2012, 5, pe24.	3.6	13
15	Serotonergic Integration of Circadian Clock and Ultradian Sleep–Wake Cycles. Journal of Neuroscience, 2012, 32, 14794-14803.	3.6	44
16	Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep–wake cycles. European Journal of Neuroscience, 2012, 35, 1762-1770.	2.6	36
17	Potent transglutaminase inhibitors, dithio β-aminoethyl ketones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 377-379.	2.2	18
18	Potent transglutaminase inhibitors, aryl β-aminoethyl ketones. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1141-1144.	2.2	22

Kozo Hamada

#	Article	IF	CITATIONS
19	Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor. Neuron, 2010, 68, 865-878.	8.1	133
20	Visualization of inositol 1,4,5-trisphosphate receptor by atomic force microscopy. Neuroscience Letters, 2006, 391, 102-107.	2.1	35
21	Inositol 1,4,5-trisphosphate Receptor Contains Multiple Cavities and L-shaped Ligand-binding Domains. Journal of Molecular Biology, 2004, 336, 155-164.	4.2	94
22	Three-dimensional Rearrangements within Inositol 1,4,5-Trisphosphate Receptor by Calcium. Journal of Biological Chemistry, 2003, 278, 52881-52889.	3.4	84
23	Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochemical Journal, 2003, 372, 435-441.	3.7	146
24	Two-state Conformational Changes in Inositol 1,4,5-Trisphosphate Receptor Regulated by Calcium. Journal of Biological Chemistry, 2002, 277, 21115-21118.	3.4	79
25	2121 Circa/ultradian oscillation of serotonin and ascorbate turnovers in rat thalamus: Regional specificity, photo responces, and metabolic perturbations. Neuroscience Research, 1997, 28, S242.	1.9	1