Evan Z Macosko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733614/publications.pdf

Version: 2024-02-01

43 papers

20,236 citations

33 h-index 233421 45 g-index

68 all docs 68
docs citations

68 times ranked 28300 citing authors

#	Article	IF	CITATIONS
1	Robust decomposition of cell type mixtures in spatial transcriptomics. Nature Biotechnology, 2022, 40, 517-526.	17.5	376
2	Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature, 2022, 601, 85-91.	27.8	117
3	Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nature Neuroscience, 2022, 25, 484-492.	14.8	27
4	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nature Neuroscience, 2022, 25, 306-316.	14.8	166
5	High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. IScience, 2022, 25, 104097.	4.1	32
6	Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nature Neuroscience, 2022, 25, 588-595.	14.8	155
7	Candelabrum cells are ubiquitous cerebellar cortex interneurons with specialized circuit properties. Nature Neuroscience, 2022, 25, 702-713.	14.8	12
8	Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell, 2022, 185, 2591-2608.e30.	28.9	62
9	Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nature Biotechnology, 2021, 39, 313-319.	17.5	569
10	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	17.5	3
11	Molecular logic of cellular diversification in the mouse cerebral cortex. Nature, 2021, 595, 554-559.	27.8	212
12	Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. Nature Communications, 2021, 12, 5491.	12.8	20
13	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 2021, 598, 103-110.	27.8	166
14	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	27.8	361
15	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
16	A transcriptomic atlas of mouse cerebellar cortex comprehensivelyÂdefines cell types. Nature, 2021, 598, 214-219.	27.8	147
17	Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature Methods, 2021, 18, 1352-1362.	19.0	276
18	Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Reports, 2021, 37, 109915.	6.4	54

#	Article	IF	Citations
19	Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nature Communications, 2021, 12, 6271.	12.8	41
20	Jointly defining cell types from multiple single-cell datasets using LIGER. Nature Protocols, 2020, 15, 3632-3662.	12.0	92
21	Single-cell RNA sequencing at isoform resolution. Nature Biotechnology, 2020, 38, 697-698.	17. 5	1
22	Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell, 2019, 177, 1873-1887.e17.	28.9	844
23	Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science, 2019, 363, 1463-1467.	12.6	1,396
24	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	14.3	1,351
25	Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics, 2018, 50, 621-629.	21.4	807
26	Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell, 2018, 174, 1015-1030.e16.	28.9	1,231
27	A molecular census of arcuate hypothalamus and median eminence cell types. Nature Neuroscience, 2017, 20, 484-496.	14.8	635
28	Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 2017, 545, 48-53.	27.8	933
29	Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron, 2017, 94, 138-152.e5.	8.1	146
30	InDrops and Drop-seq technologies for single-cell sequencing. Lab on A Chip, 2017, 17, 2540-2541.	6.0	37
31	Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell, 2016, 166, 1308-1323.e30.	28.9	1,010
32	Balancing selection shapes density-dependent foraging behaviour. Nature, 2016, 539, 254-258.	27.8	132
33	Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015, 161, 1202-1214.	28.9	5,908
34	Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C.Âelegans. Cell, 2013, 154, 1023-1035.	28.9	356
35	Our Fallen Genomes. Science, 2013, 342, 564-565.	12.6	8
36	Exploring the variation within. Nature Genetics, 2012, 44, 614-616.	21.4	21

#	Article	IF	CITATIONS
37	Neuromodulatory State and Sex Specify Alternative Behaviors through Antagonistic Synaptic Pathways in C.Âelegans. Neuron, 2012, 75, 585-592.	8.1	141
38	Oxytocin/Vasopressin-Related Peptides Have an Ancient Role in Reproductive Behavior. Science, 2012, 338, 540-543.	12.6	225
39	A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature, 2009, 458, 1171-1175.	27.8	444
40	Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors. Neuron, 2009, 61, 692-699.	8.1	219
41	Innate Immunity in <i>Caenorhabditis elegans</i> Is Regulated by Neurons Expressing NPR-1/GPCR. Science, 2008, 322, 460-464.	12.6	210
42	Functional and Selective RNA Interference in Developing Axons and Growth Cones. Journal of Neuroscience, 2006, 26, 5727-5732.	3.6	174
43	Local translation of RhoA regulates growth cone collapse. Nature, 2005, 436, 1020-1024.	27.8	407