Maria R Lukatskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies. Journal of Physical Chemistry B, 2021, 125, 4501-4513.	2.6	52
2	Can Anions Be Inserted into MXene?. Journal of the American Chemical Society, 2021, 143, 12552-12559.	13.7	63
3	Water or Anion? Uncovering the Zn ²⁺ Solvation Environment in Mixed Zn(TFSI) ₂ and LiTFSI Water-in-Salt Electrolytes. ACS Energy Letters, 2021, 6, 3458-3463.	17.4	45
4	Bottom-Up Design of Configurable Oligomer-Derived Conducting Metallopolymers for High-Power Electrochemical Energy Storage. ACS Nano, 2021, 15, 15422-15428.	14.6	9
5	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. Chemistry of Materials, 2021, 33, 7315-7336.	6.7	39
6	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 2020, 59, 23180-23187.	13.8	28
7	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie, 2020, 132, 23380-23387.	2.0	9
8	Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal–Organic Frameworks in Aqueous Electrolytes. ACS Nano, 2020, 14, 15919-15925.	14.6	46
9	Understanding the MXene Pseudocapacitance. Journal of Physical Chemistry Letters, 2018, 9, 1223-1228.	4.6	231
10	Robust and conductive two-dimensional metalâ^'organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 2018, 3, 30-36.	39.5	786
11	Concentrated mixed cation acetate "water-in-salt―solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy and Environmental Science, 2018, 11, 2876-2883.	30.8	315
12	2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2, .	48.7	5,261
13	In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. ACS Energy Letters, 2017, 2, 1407-1415.	17.4	56
14	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2, .	39.5	1,626
15	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Advanced Functional Materials, 2016, 26, 3118-3127.	14.9	945
16	MXene Materials: Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes (Adv. Electron. Mater. 12/2016). Advanced Electronic Materials, 2016, 2, .	5.1	18
17	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	6.7	210
18	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	17.4	1,100

MARIA R LUKATSKAYA

#	Article	IF	CITATIONS
19	Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 2016, 7, 12647.	12.8	1,281
20	Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes. Advanced Electronic Materials, 2016, 2, 1600255.	5.1	1,160
21	NMR reveals the surface functionalisation of Ti ₃ C ₂ MXene. Physical Chemistry Chemical Physics, 2016, 18, 5099-5102.	2.8	689
22	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8, 9128-9133.	5.6	225
23	Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2015, 5, 1500589.	19.5	521
24	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti ₂ SC. Angewandte Chemie - International Edition, 2015, 54, 4810-4814.	13.8	100
25	Amineâ€Assisted Delamination of Nb ₂ C MXene for Liâ€Ion Energy Storage Devices. Advanced Materials, 2015, 27, 3501-3506.	21.0	749
26	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	16.0	166
27	Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 2015, 27, 339-345.	21.0	1,125
28	Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. Journal of Power Sources, 2015, 274, 121-129.	7.8	66
29	Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartzâ€Crystal Admittance and In Situ Electronic Conductance Measurements. Advanced Energy Materials, 2015, 5, 1400815.	19.5	283
30	High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 2014, 48, 118-122.	4.7	420
31	Conductive two-dimensional titanium carbide â€~clay' with high volumetric capacitance. Nature, 2014, 516, 78-81.	27.8	4,306
32	Roomâ€Temperature Carbideâ€Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. Angewandte Chemie - International Edition, 2014, 53, 4877-4880.	13.8	133
33	Stable colloidal solutions of strontium hexaferrite hard magnetic nanoparticles. Chemical Communications, 2014, 50, 14581-14584.	4.1	21
34	In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti ₃ C ₂ and formation of carbon-supported TiO ₂ . Journal of Materials Chemistry A, 2014, 2, 14339.	10.3	287
35	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chemical Communications, 2014, 50, 7420-7423.	4.1	614
36	Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chemistry of Materials, 2014, 26, 2374-2381.	6.7	1,173

MARIA R LUKATSKAYA

#	Article	IF	CITATIONS
37	Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 2013, 341, 1502-1505.	12.6	3,329
38	Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem, 2013, 6, 2269-2280.	6.8	155
39	Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry. Materials Express, 2013, 3, 1-10.	0.5	18
40	Separation and liquid chromatography using a single carbon nanotube. Scientific Reports, 2012, 2, 510.	3.3	19
41	Three-dimensional nanostructures from porous anodic alumina. MRS Communications, 2012, 2, 51-54.	1.8	1
42	Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina. Chemical Communications, 2011, 47, 2396-2398.	4.1	24
43	Cobalt-containing nanocomposites based on zeolites of MFI framework type. Journal of Magnetism and Magnetic Materials, 2009, 321, 3866-3869.	2.3	10