List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733415/publications.pdf Version: 2024-02-01

DHILIDDE MENEL

#	Article	IF	CITATIONS
1	Transfer Learning from Healthy to Unhealthy Patients for the Automated Classification of Functional Brain Networks in fMRI. Applied Sciences (Switzerland), 2022, 12, 6925.	2.5	1
2	RNA-sequencing of IDH-wild-type glioblastoma with chromothripsis identifies novel gene fusions with potential oncogenic properties. Translational Oncology, 2021, 14, 100884.	3.7	7
3	What effects does awake craniotomy have on functional and survival outcomes for glioblastoma patients?. Journal of Neuro-Oncology, 2021, 151, 113-121.	2.9	10
4	Immersive Virtual Reality and Ocular Tracking for Brain Mapping During Awake Surgery: Prospective Evaluation Study. Journal of Medical Internet Research, 2021, 23, e24373.	4.3	9
5	A Simple Preoperative Blood Count to Stratify Prognosis in Isocitrate Dehydrogenase-Wildtype Glioblastoma Patients Treated with Radiotherapy plus Concomitant and Adjuvant Temozolomide. Cancers, 2021, 13, 5778.	3.7	10
6	Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study. BMC Neuroscience, 2021, 22, 74.	1.9	1
7	Immersing Patients in a Virtual Reality Environment for Brain Mapping During Awake Surgery: Safety Study. World Neurosurgery, 2020, 134, e937-e943.	1.3	25
8	Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells?. Cancers, 2020, 12, 2628.	3.7	16
9	The ventral attention network: the mirror of the language network in the right brain hemisphere. Journal of Anatomy, 2020, 237, 632-642.	1.5	21
10	Restingâ€state functional magnetic resonance imaging versus taskâ€based activity for language mapping and correlation with perioperative cortical mapping. Brain and Behavior, 2019, 9, e01362.	2.2	33
11	<p>Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far</p> . International Journal of Nanomedicine, 2019, Volume 14, 2497-2513.	6.7	15
12	The French glioblastoma biobank (FGB): a national clinicobiological database. Journal of Translational Medicine, 2019, 17, 133.	4.4	19
13	A new glioblastoma cell trap for implantation after surgical resection. Acta Biomaterialia, 2019, 84, 268-279.	8.3	25
14	Whole genome duplication is an early event leading to aneuploidy in IDH-wild type glioblastoma. Oncotarget, 2018, 9, 36017-36028.	1.8	15
15	Integration of transcriptome and proteome profiles in glioblastoma: looking for the missing link. BMC Molecular Biology, 2018, 19, 13.	3.0	24
16	Right Hemisphere Cognitive Functions: From Clinical and Anatomical Bases to Brain Mapping During Awake Craniotomy. Part II: Neuropsychological Tasks and Brain Mapping. World Neurosurgery, 2018, 118, 360-367.	1.3	19
17	Right Hemisphere Cognitive Functions: From Clinical and Anatomic Bases to Brain Mapping During Awake Craniotomy Part I: Clinical and Functional Anatomy. World Neurosurgery, 2018, 118, 348-359.	1.3	26
18	Using a Virtual Reality Social Network During Awake Craniotomy to Map Social Cognition: Prospective Trial. Journal of Medical Internet Research, 2018, 20, e10332.	4.3	24

#	Article	IF	CITATIONS
19	Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset. World Neurosurgery, 2017, 97, 424-430.	1.3	33
20	Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal?. Journal of Experimental and Clinical Cancer Research, 2017, 36, 135.	8.6	26
21	Response to "Glioma resection and tumor recurrence: back to Semmelweis― Neuro-Oncology, 2016, 18, 1689-1689.	1.2	0
22	Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules. International Journal of Nanomedicine, 2015, 10, 1259.	6.7	21
23	Characterizing the peritumoral brain zone in glioblastoma: a multidisciplinary analysis. Journal of Neuro-Oncology, 2015, 122, 53-61.	2.9	61
24	Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins. Journal of Neuro-Oncology, 2015, 122, 1-10.	2.9	21
25	Long-term results of carmustine wafer implantation for newly diagnosed glioblastomas: a controlled propensity-matched analysis of a French multicenter cohort. Neuro-Oncology, 2015, 17, 1609-1619.	1.2	60
26	Specificities of Awake Craniotomy and Brain Mapping in Children for Resection of Supratentorial Tumors in the Language Area. World Neurosurgery, 2015, 84, 1645-1652.	1.3	48
27	Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. Neuro-Oncology, 2015, 17, 1322-1332.	1.2	217
28	From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity. Oncotarget, 2015, 6, 12094-12109.	1.8	75
29	Glioblastomaâ€associated stromal cells (<scp>GASCs</scp>) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. Journal of Pathology, 2014, 233, 74-88.	4.5	67
30	French Research Infrastructures to Develop and Validate Glioma Biomarkers. Neurosurgery, 2014, 75, E195-E196.	1.1	2
31	Implanted Carmustine Wafers Followed by Concomitant Radiochemotherapy to Treat Newly Diagnosed Malignant Gliomas: Prospective, Observational, Multicenter Study on 92 Cases. Annals of Surgical Oncology, 2013, 20, 2065-2072.	1.5	38
32	Proteomic analysis of glioblastomas: What is the best brain control sample?. Journal of Proteomics, 2013, 85, 165-173.	2.4	26
33	In vitro and in vivo interactions between glioma and marrow-isolated adult multilineage inducible (MIAMI) cells. Brain Research, 2012, 1473, 193-203.	2.2	10
34	Mesenchymal Stem Cells: Role for Delivering Nanoparticles to Brain Tumors. , 2012, , 251-256.		1
35	Quantitative proteomic Isotope-Coded Protein Label (ICPL) analysis reveals alteration of several functional processes in the glioblastoma. Journal of Proteomics, 2012, 75, 3898-3913.	2.4	37
36	O ⁶ â€methylguanineâ€DNA methyltransferase (MGMT) promoter methylation and low MGMTâ€encoded protein expression as prognostic markers in glioblastoma patients treated with biodegradable carmustine wafer implants after initial surgery followed by radiotherapy with concomitant and adjuvant temozolomide. Cancer, 2012, 118, 4545-4554.	4.1	79

#	Article	IF	CITATIONS
37	Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. International Journal of Pharmaceutics, 2012, 423, 63-68.	5.2	48
38	Isolation of a new cell population in the glioblastoma microenvironment. Journal of Neuro-Oncology, 2012, 106, 493-504.	2.9	61
39	Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188Re-lipid nanocapsules. Biomaterials, 2011, 32, 6781-6790.	11.4	63
40	The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials, 2011, 32, 2106-2116.	11.4	69
41	A 4-Gene Signature Associated with Clinical Outcome in High-Grade Gliomas. Clinical Cancer Research, 2011, 17, 317-327.	7.0	73
42	Biodegradable Carmustine Wafers (Gliadel) Alone or in Combination with Chemoradiotherapy: The French Experience. Annals of Surgical Oncology, 2010, 17, 1740-1746.	1.5	69
43	Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials, 2010, 31, 8393-8401.	11.4	208
44	In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy. Journal of Neuro-Oncology, 2010, 97, 195-205.	2.9	43
45	DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics, 2010, 11, 701.	2.8	181
46	Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro-Oncology, 2010, 12, 725-735.	1.2	149
47	Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 500-511.	1.5	14
48	Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone, 2007, 40, 360-373.	2.9	89
49	Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 221-228.	4.3	18
50	The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat. Biomaterials, 2006, 27, 4963-4974.	11.4	21
51	Evaluation of particulate systems supporting tumor cell fractions in a preventive vaccination against intracranial rat glioma. Journal of Neurosurgery, 2006, 105, 745-752.	1.6	3
52	A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Molecular Cancer Therapeutics, 2006, 5, 1710-1722.	4.1	179
53	Local and Sustained Delivery of 5-Fluorouracil from Biodegradable Microspheres for the Radiosensitization of Malignant Glioma: A Randomized Phase II Trial. Neurosurgery, 2005, 56, 242-248.	1.1	101
54	Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opinion on Drug Delivery, 2005, 2, 363-376.	5.0	47

#	Article	IF	CITATIONS
55	In vitro study of GDNF release from biodegradable PLGA microspheres. Journal of Controlled Release, 2004, 95, 463-475.	9.9	108
56	Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 2004, 117, 2971-2981.	2.0	616
57	Influence of 5-Fluorouracil-Loaded Microsphere Formulation on Efficient Rat Glioma Radiosensitization. Pharmaceutical Research, 2004, 21, 1558-1563.	3.5	19
58	Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson's disease. Biomaterials, 2004, 25, 933-942.	11.4	97
59	Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer, 2004, 100, 405-410.	4.1	105
60	Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson's disease. Neuroscience Letters, 2004, 356, 207-210.	2.1	44
61	Striatal tyrosine hydroxylase immunoreactive neurons are induced by l-dihydroxyphenylalanine and nerve growth factor treatment in 6-hydroxydopamine lesioned rats. Neuroscience Letters, 2004, 362, 79-82.	2.1	34
62	Therapeutic effectiveness of novel 5-fluorouracil-loaded poly(methylidene malonate 2.1.2)-based microspheres on F98 glioma-bearing rats. Cancer, 2003, 97, 2822-2829.	4.1	42
63	Pseudotumoral demyelination: a diagnosis pitfall (report of three cases). Journal of Neuro-Oncology, 2001, 54, 71-76.	2.9	12
64	Analysis of brain biocompatibility of drug-releasing biodegradable microspheres by scanning and transmission electron microscopy. Journal of Neurosurgery, 2001, 95, 489-494.	1.6	35
65	Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons. Biomaterials, 2000, 21, 2097-2101.	11.4	90
66	Development of microspheres for neurological disorders: From basics to clinical applications. Journal of Controlled Release, 2000, 65, 285-296.	9.9	158
67	Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma. Cancer, 1999, 86, 325-330.	4.1	122
68	NGF release from poly(d,l-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. Journal of Controlled Release, 1998, 56, 175-187.	9.9	150
69	Effect of Stereotactic Implantation of Biodegradable 5-Fluorouracil-loaded Microspheres in Healthy and C6 Glioma-bearing Rats. Neurosurgery, 1996, 39, 117-124.	1.1	117
70	Drug Targeting into the Central Nervous System by Stereotactic Implantation of Biodegradable Microspheres. Neurosurgery, 1994, 34, 1058-1064.	1.1	56
71	Drug Targeting into the Central Nervous System by Stereotactic Implantation of Biodegradable Microspheres. Neurosurgery, 1994, 34, 1058-1064.	1.1	64