Robert C Fleischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3732740/publications.pdf

Version: 2024-02-01

99 papers 4,323 citations

147801 31 h-index 61 g-index

102 all docs 102 docs citations

102 times ranked

5400 citing authors

#	Article	lF	CITATIONS
1	Corrigendum to: Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification. Auk, 2022, 139, .	1.4	2
2	Independent evolutionary transitions to pueriparity across multiple timescales in the viviparous genus Salamandra. Molecular Phylogenetics and Evolution, 2022, 167, 107347.	2.7	3
3	An efficient method for simultaneous species, individual, and sex identification via inâ€solution single nucleotide polymorphism capture from lowâ€quality scat samples. Molecular Ecology Resources, 2022, 22, 1345-1361.	4.8	5
4	Conservation genomics and systematics of a nearâ€extinct island radiation. Molecular Ecology, 2022, 31, 1995-2012.	3.9	4
5	A genomeâ€wide investigation of adaptive signatures in proteinâ€coding genes related to tool behaviour in New Caledonian and Hawaiian crows. Molecular Ecology, 2021, 30, 973-986.	3.9	2
6	The uropygial gland microbiome of house sparrows with malaria infection. Journal of Avian Biology, 2021, 52, .	1.2	11
7	Transcriptome assembly and differential gene expression of the invasive avian malaria parasite <i>Plasmodium relictum</i> in Hawaiʻi. Ecology and Evolution, 2021, 11, 4935-4944.	1.9	10
8	Comparative Analysis of Annotation Pipelines Using the First Japanese White-Eye (<i>Zosterops) Tj ETQq0 0 0 rg</i>	BT/Qverlo	ock ₃ 10 Tf 50 4
9	Genetic structure and population history in two critically endangered Kaua†i honeycreepers. Conservation Genetics, 2021, 22, 601-614.	1.5	5
10	Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification. Auk, $2021,138,.$	1.4	14
11	Adaptive Radiation Genomics of Two Ecologically Divergent Hawaiâ€īan Honeycreepers: The â€̃akiapŦÄâ€̃au and the Hawaiâ€̃i â€̃amakihi. Journal of Heredity, 2020, 111, 21-32.	2.4	6
12	Cutaneous Filariasis in Free-Ranging Rothschild's Giraffes (Giraffa camelopardalis rothschildi) in Uganda. Journal of Wildlife Diseases, 2020, 56, 234.	0.8	7
13	Assessing changes in genomic divergence following a century of humanâ€mediated secondary contact among wild and captiveâ€bred ducks. Molecular Ecology, 2020, 29, 578-595.	3.9	35
14	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
15	Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus. Molecular Ecology, 2020, 29, 2889-2903.	3.9	24
16	Conservative plumage masks extraordinary phylogenetic diversity in the Grallaria rufula (Rufous) Tj ETQq0 0 0 rg	BT/Qverlo	ock 140 Tf 50 1
17	The role of native and introduced birds in transmission of avian malaria in Hawaii. Ecology, 2020, 101, e03038.	3.2	20
18	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146

#	Article	IF	CITATIONS
19	Cutaneous Filariasis in Free-Ranging Rothschild's Giraffes () in Uganda. Journal of Wildlife Diseases, 2020, 56, 234-238.	0.8	2
20	The Contribution of Genomics to Bird Conservation. , 2019, , 295-330.		5
21	GPS tracking and population genomics suggest itinerant breeding across drastically different habitats in the Phainopepla. Auk, 2019, 136, .	1.4	3
22	Diversity and temporal dynamics of primate milk microbiomes. American Journal of Primatology, 2019, 81, e22994.	1.7	17
23	Parthenogenesis in a captive Asian water dragon (Physignathus cocincinus) identified with novel microsatellites. PLoS ONE, 2019, 14, e0217489.	2.5	11
24	First Report of a Novel Hepatozoon sp. in Giant Pandas (Ailuropoda melanoleuca). EcoHealth, 2019, 16, 338-345.	2.0	2
25	Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Molecular Ecology, 2019, 28, 2917-2931.	3.9	41
26	Northâ€facing slopes and elevation shape asymmetric genetic structure in the rangeâ€restricted salamander <i>Plethodon shenandoah</i>). Ecology and Evolution, 2019, 9, 5094-5105.	1.9	9
27	Conservation of adaptive potential and functional diversity. Conservation Genetics, 2019, 20, 1-5.	1.5	46
28	Population Genomics and Structure of the Critically Endangered Mariana Crow (Corvus kubaryi). Genes, 2019, 10, 187.	2.4	11
29	Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts. Biological Invasions, 2019, 21, 2233-2245.	2.4	42
30	Functional variation at an expressed MHC class $\hat{\Pi}^2$ locus associates with Ranavirus infection intensity in larval anuran populations. Immunogenetics, 2019, 71, 335-346.	2.4	16
31	Parallel evolution of gene classes, but not genes: Evidence from Hawai'ian honeycreeper populations exposed to avian malaria. Molecular Ecology, 2019, 28, 568-583.	3.9	26
32	Genomic evidence of speciation reversal in ravens. Nature Communications, 2018, 9, 906.	12.8	105
33	Direct fitness benefits and kinship of social foraging groups in an Old World tropical babbler. Behavioral Ecology, 2018, 29, 468-478.	2.2	9
34	Effects of host species and environment on the skin microbiome of Plethodontid salamanders. Journal of Animal Ecology, 2018, 87, 341-353.	2.8	120
35	Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond. International Journal for Parasitology, 2018, 48, 135-144.	3.1	12
36	Protistan Biogeography: A Snapshot Across a Major Shipping Corridor Spanning Two Oceans. Protist, 2017, 168, 183-196.	1.5	4

3

#	Article	IF	CITATIONS
37	Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Applied and Environmental Microbiology, 2017, 83, .	3.1	36
38	Molecular characterisation of protistan species and communities in ships' ballast water across three U.S. coasts. Diversity and Distributions, 2017, 23, 680-691.	4.1	17
39	Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160116.	4.0	39
40	Evolutionary dynamics of an expressed MHC class $\hat{\mathbb{Il}}^2$ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. Developmental and Comparative Immunology, 2017, 76, 177-188.	2.3	10
41	Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders. Scientific Reports, 2017, 7, 13132.	3.3	31
42	Interacting effects of wildlife loss and climate on ticks and tick-borne disease. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170475.	2.6	27
43	Simultaneous identification of host, ectoparasite and pathogen ⟨scp⟩DNA⟨/scp⟩ via inâ€solution capture. Molecular Ecology Resources, 2016, 16, 1224-1239.	4.8	31
44	Richness and distribution of tropical oyster parasites in two oceans. Parasitology, 2016, 143, 1119-1132.	1.5	27
45	Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon) Tj ETQq1	1 0.78431 2.8	14.rgBT /0ve
46	Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer () Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50
47	A novel <i>MC1R</i> allele for black coat colour reveals the Polynesian ancestry and hybridization patterns of Hawaiian feral pigs. Royal Society Open Science, 2016, 3, 160304.	2.4	19
48	Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen., 2016, 4, cow011.		29
49	Geographic population structure and subspecific boundaries in a tidal marsh sparrow. Conservation Genetics, 2016, 17, 603-613.	1.5	7
50	The influence of captive breeding management on founder representation and inbreeding in the â€~AlalÄ•, the Hawaiian crow. Conservation Genetics, 2016, 17, 369-378.	1.5	7
51	Identification and characterization of microsatellite loci in two socially complex old world tropical babblers (Family Timaliidae). BMC Research Notes, 2015, 8, 707.	1.4	2
52	Phylogeography of the Golden Jackal (Canis aureus) in India. PLoS ONE, 2015, 10, e0138497.	2.5	18
53	Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon) Tj ETQq1 1	0,784314 2.5	rgBT /Overle
54	Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends in Ecology and Evolution, 2015, 30, 540-549.	8.7	86

#	Article	IF	CITATIONS
55	Molecular phylogenetics reveals first record and invasion of Saccostrea species in the Caribbean. Marine Biology, 2015, 162, 957-968.	1.5	22
56	Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows. Nature Communications, 2015, 6, 7197.	12.8	46
57	Distinct and extinct: Genetic differentiation of the Hawaiian eagle. Molecular Phylogenetics and Evolution, 2015, 83, 40-43.	2.7	6
58	Prioritizing Tiger Conservation through Landscape Genetics and Habitat Linkages. PLoS ONE, 2014, 9, e111207.	2.5	94
59	Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics, 2014, 15, 1098.	2.8	21
60	Elephant Endotheliotropic Herpesviruses EEHV1A, EEHV1B, and EEHV2 from Cases of Hemorrhagic Disease Are Highly Diverged from Other Mammalian Herpesviruses and May Form a New Subfamily. Journal of Virology, 2014, 88, 13523-13546.	3.4	50
61	Conservation and divergence in the frog immunome: pyrosequencing and de novo assembly of immune tissue transcriptomes. Gene, 2014, 542, 98-108.	2.2	26
62	First Record of Hybridization in the Hawaiian Honeycreepers: 'l'iwi (<i>Vestiaria coccinea</i>) × 'Apapane (<i>Himatione sanguinea</i>). Wilson Journal of Ornithology, 2014, 126, 562-568.	0.2	8
63	Unexpected Rarity of the Pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957–2011. PLoS ONE, 2014, 9, e103728.	2.5	43
64	High levels of relatedness between Brown-headed Cowbird (<i>Molothrus ater</i>) nestmates in a heavily parasitized host community. Auk, 2012, 129, 623-631.	1.4	23
65	A New Species of Shearwater (<i>Puffinus</i>) Recorded from Midway Atoll, Northwestern Hawaiian Islands. Condor, 2011, 113, 518-527.	1.6	26
66	Charting the course of reed-warblers across the Pacific islands. Journal of Biogeography, 2011, 38, 1963-1975.	3.0	36
67	Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology, 2011, 21, 1838-1844.	3.9	431
68	Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). Conservation Genetics, 2011, 12, 423-431.	1.5	29
69	Polymorphic microsatellite markers for the endangered Hawaiian petrel (Pterodroma sandwichensis). Conservation Genetics Resources, 2011, 3, 581-584.	0.8	4
70	Ladies and gentes: Maternally inherited DNA and ancient honeyguide host races. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17859-17860.	7.1	2
71	Complex Biogeographic History of <i>Lanius </i> Shrikes and its Implications for the Evolution of Defenses against Avian Brood Parasitism. Condor, 2011, 113, 385-394.	1.6	17
72	Spatial and temporal patterns of genetic diversity in an endangered Hawaiian honeycreeper, the Hawaii Akepa (Loxops coccineus coccineus). Conservation Genetics, 2010, 11, 225-240.	1.5	22

#	Article	IF	Citations
73	Extrapair paternity in the swamp sparrow, Melospiza georgiana: male access or female preference?. Behavioral Ecology and Sociobiology, 2008, 63, 285-294.	1.4	16
74	A new subspecies of Tesia olivea (Sylviidae) from Chiang Mai province, northern Thailand. Journal of Ornithology, 2008, 149, 439-450.	1.1	8
75	As the raven flies: using genetic data to infer the history of invasive common raven (<i>Corvus) Tj ETQq1 1 0.784</i>	1314 rgBT 3.9	/Oyerlock 10
76	Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria. BMC Evolutionary Biology, 2008, 8, 315.	3.2	27
77	Convergent Evolution of Hawaiian and Australo-Pacific Honeyeaters from Distant Songbird Ancestors. Current Biology, 2008, 18, 1927-1931.	3.9	70
78	GENETIC VARIABILITY AND TAXONOMIC STATUS OF THE NIHOA AND LAYSAN MILLERBIRDS. Condor, 2007, 109, 954.	1.6	12
79	Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa. PLoS ONE, 2007, 2, e896.	2.5	29
80	Genetic structure and evolved malaria resistance in Hawaiian honeycreepers. Molecular Ecology, 2007, 16, 4738-4746.	3.9	90
81	Mid-Pleistocene divergence of Cuban and North American ivory-billed woodpeckers. Biology Letters, 2006, 2, 466-469.	2.3	43
82	Isolation and characterization of polymorphic microsatellite loci in the Hawaiian flycatcher, the elepaio (Chasiempis sandwichensis). Molecular Ecology Notes, 2006, 6, 14-16.	1.7	2
83	Global phylogeographic limits of Hawaii's avian malaria. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2935-2944.	2.6	218
84	PATHWAYS OF EXPANSION AND MULTIPLE INTRODUCTIONS ILLUSTRATED BY LARGE GENETIC DIFFERENTIATION AMONG WORLDWIDE POPULATIONS OF THE SOUTHERN HOUSE MOSQUITO. American Journal of Tropical Medicine and Hygiene, 2006, 74, 284-289.	1.4	85
85	A Restriction Enzyme–Based Assay to Distinguish Between Avian Hemosporidians. Journal of Parasitology, 2005, 91, 683-685.	0.7	87
86	Microsatellite markers for woolly monkeys (Lagothrix lagotricha) and their amplification in other New World primates (Primates: Platyrrhini). Molecular Ecology Notes, 2004, 4, 246-249.	1.7	21
87	Isolation of polymorphic microsatellite loci in the Hawaii amakihi (Hemignathus virens) and their use in other honeycreeper species. Molecular Ecology Notes, 2004, 4, 725-727.	1.7	3
88	Reciprocal Introgression Between Golden-Winged Warblers (Vermivora Chrysoptera) and Blue-Winged Warblers (V. Pinus) in Eastern North America. Auk, 2004, 121, 1019-1030.	1.4	3
89	Extinct Birds, Second Edition. Condor, 2003, 105, 166-167.	1.6	0
90	Phylogenetic evidence for colour pattern convergence in toxic pitohuis: $M\tilde{A}^{1/4}$ llerian mimicry in birds?. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1971-1976.	2.6	121

#	Article	IF	CITATIONS
91	High Frequency of Extra-Pair Paternity in Eastern Kingbirds. Condor, 2001, 103, 845-851.	1.6	19
92	PHYLOGEOGRAPHY OF THE ASIAN ELEPHANT (ELEPHAS MAXIMUS) BASED ON MITOCHONDRIAL DNA. Evolution; International Journal of Organic Evolution, 2001, 55, 1882-1892.	2.3	84
93	Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Molecular Ecology, 2000, 9, 1803-1814.	3.9	95
94	Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2187-2193.	2.6	81
95	Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K–Arâ€based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Molecular Ecology, 1998, 7, 533-545.	3.9	462
96	Genetic monogamy in the common loon (Gavia immer). Behavioral Ecology and Sociobiology, 1997, 41, 25-31.	1.4	53
97	Ancient DNA and island endemics. Nature, 1996, 381, 484-484.	27.8	78
98	Genetic Structure of Endangered Clapper Rail (Rallus longirostris) Populations in Southern California. Conservation Biology, 1995, 9, 1234-1243.	4.7	16
99	Cuckoldry through stored sperm in the sequentially polyandrous spotted sandpiper. Nature, 1992, 359, 631-633.	27.8	123