
Alexandre V Vorontsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3732083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. Journal of Catalysis, 2015, 325, 145-155.	6.2	415
2	Role of Platinum Deposited on TiO2in Phenol Photocatalytic Oxidation. Langmuir, 2003, 19, 3151-3156.	3.5	290
3	Advancing Fenton and photo-Fenton water treatment through the catalyst design. Journal of Hazardous Materials, 2019, 372, 103-112.	12.4	221
4	Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 125, 113-117.	3.9	130
5	Photocatalytic destruction of gaseous diethyl sulfide over TiO2. Applied Catalysis B: Environmental, 2001, 32, 11-24.	20.2	110
6	Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide. Journal of Catalysis, 2003, 220, 414-423.	6.2	96
7	Experimental Study of Dimethyl Methylphosphonate Decomposition over Anatase TiO2. Journal of Physical Chemistry B, 2005, 109, 21884-21892.	2.6	92
8	Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu ⁰ and TiO ₂ Anatase. Industrial & Engineering Chemistry Research, 2018, 57, 2526-2536.	3.7	78
9	Routes of photocatalytic destruction of chemical warfare agent simulants. New Journal of Chemistry, 2002, 26, 732-744.	2.8	69
10	Insights into Reinforced Photocatalytic Activity of the CNT–TiO ₂ Nanocomposite for CO ₂ Reduction and Water Splitting. Journal of Physical Chemistry C, 2019, 123, 367-378.	3.1	67
11	Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catalysis Communications, 2011, 12, 597-601.	3.3	62
12	Comparative study on photocatalytic oxidation of four organophosphorus simulants of chemical warfare agents in aqueous suspension of titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 503-511.	3.9	60
13	Vibrofluidized- and fixed-bed photocatalytic reactors: case of gaseous acetone photooxidation. Chemical Engineering Science, 2000, 55, 5089-5098.	3.8	57
14	Self-assembled reduced graphene oxide-TiO2 nanocomposites: Synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon, 2019, 147, 385-397.	10.3	57
15	Enhanced photocatalytic degradation of dimethyl methylphosphonate in the presence of low-frequency ultrasound. Photochemical and Photobiological Sciences, 2003, 2, 694.	2.9	52
16	Efficient approach for simultaneous CO and H2 production via photoreduction of CO2 with water over copper nanoparticles loaded TiO2. Applied Catalysis A: General, 2016, 523, 107-117.	4.3	52
17	Photocatalytic hydrogen evolution from aqueous solutions of organophosphorous compounds. International Journal of Hydrogen Energy, 2010, 35, 7337-7343.	7.1	51
18	Influence of mesoporous and platinum-modified titanium dioxide preparation methods on photocatalytic activity in liquid and gas phase. Applied Catalysis B: Environmental, 2007, 77, 35-45.	20.2	50

#	Article	IF	CITATIONS
19	Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 103-109.	3.9	48
20	TiO2 reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor. Applied Catalysis B: Environmental, 2003, 44, 25-40.	20.2	47
21	Photocatalytic Degradation of 2-Phenethyl-2-chloroethyl Sulfide in Liquid and Gas Phases. Environmental Science & Technology, 2002, 36, 5261-5269.	10.0	46
22	Overall water splitting over Pt/TiO2 catalyst with Ce3+/Ce4+ shuttle charge transfer system. International Journal of Hydrogen Energy, 2009, 34, 138-146.	7.1	45
23	Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: Significance of sulfur doping. International Journal of Hydrogen Energy, 2018, 43, 17682-17695.	7.1	43
24	Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification. Applied Catalysis A: General, 2009, 367, 130-137.	4.3	42
25	Photocatalytic oxidation of ethanol and isopropanol vapors on cadmium sulfide. Journal of Catalysis, 2012, 287, 138-148.	6.2	40
26	Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity. Research on Chemical Intermediates, 2007, 33, 449-464.	2.7	39
27	Noble metal and sulfuric acid modified TiO2 photocatalysts: Mineralization of organophosphorous compounds. Applied Catalysis B: Environmental, 2006, 63, 114-123.	20.2	38
28	Engineering and modeling the effect of Mg doping in TiO ₂ for enhanced photocatalytic reduction of CO ₂ to fuels. Catalysis Science and Technology, 2018, 8, 3686-3694.	4.1	38
29	Reduced graphene oxide/NH2-MIL-125(Ti) composite: Selective CO2 photoreduction to methanol under visible light and computational insights into charge separation. Journal of CO2 Utilization, 2020, 42, 101300.	6.8	37
30	Photocatalytic oxidation of VX simulant 2-(butylamino)ethanethiol. Journal of Hazardous Materials, 2004, 113, 89-95.	12.4	32
31	Hydrous TiO2 materials and their application for sorption of inorganic ions. Chemical Engineering Journal, 2014, 251, 131-137.	12.7	26
32	Oxygen vacancies in nano-sized TiO2 anatase nanoparticles. Solid State Ionics, 2019, 339, 115009.	2.7	22
33	Cluster models of photocatalytic anatase TiO2 nanoparticles and their computational characterization. Catalysis Today, 2015, 252, 168-176.	4.4	21
34	Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts. Applied Catalysis B: Environmental, 2016, 183, 18-27.	20.2	21
35	Fast elimination of organic airborne compounds by adsorption and catalytic oxidation over aerosol TiO2. Catalysis Communications, 2008, 9, 2598-2600.	3.3	18
36	Recent Advancements in the Understanding of the Surface Chemistry in TiO2 Photocatalysis. Surfaces, 2020, 3, 72-92.	2.3	18

#	Article	IF	CITATIONS
37	Acceleration of Acetone Destruction Process under Synergistic Action of Photocatalytic Oxidation and Barrier Discharge. Plasma Chemistry and Plasma Processing, 2007, 27, 624-634.	2.4	17
38	Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method. Physical Chemistry Chemical Physics, 2018, 20, 14740-14752.	2.8	17
39	The Influence of Corona Electrodes Thickness on the Efficiency of Plasmachemical Oxidation of Acetone. Plasma Chemistry and Plasma Processing, 2011, 31, 23-39.	2.4	16
40	Quantum size effect and visible light activity of anatase nanosheet quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 39-46.	3.9	16
41	Molecular and reactive adsorption of dimethyl methylphosphonate over (001) and (100) anatase clusters. Computational and Theoretical Chemistry, 2013, 1020, 63-71.	2.5	15
42	Insights into the visible light photocatalytic activity of S-doped hydrated TiO2. International Journal of Hydrogen Energy, 2019, 44, 17963-17973.	7.1	15
43	Size and surface groups effects in decahedral anatase nanoparticles for photocatalytic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 363, 51-60.	3.9	14
44	Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2. Journal of Hazardous Materials, 2011, 186, 1147-1153.	12.4	11
45	Oxidation of Ethanol Vapors in Negative Atmospheric Corona Discharge. Industrial & Engineering Chemistry Research, 2013, 52, 5842-5848.	3.7	11
46	Physicochemical properties and photocatalytic activity of H3PW12O40/TiO2. Kinetics and Catalysis, 2015, 56, 308-315.	1.0	10
47	Catalytic vapour-phase hydrolysis and photocatalytic oxidation of dimethyl methylphosphonate on a TiO2 surface. Mendeleev Communications, 2004, 14, 197-199.	1.6	9
48	Arrangement of acid sites on the surfaces of anatase titanium dioxide nanoparticles according to cluster models. Kinetics and Catalysis, 2014, 55, 409-415.	1.0	9
49	Preparation of Organic Compounds Using Photocatalytic Reactions. Current Organic Chemistry, 2013, 17, 2459-2481.	1.6	9
50	Fast purification of air from diethyl sulfide with nanosized TiO2 aerosol. Applied Catalysis B: Environmental, 2013, 129, 318-324.	20.2	8
51	Influence of Nafion loading on hydrogen production in a membrane photocatalytic system. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 297, 8-13.	3.9	8
52	Structural and electronic effects in acetone adsorption over TiO2 anatase clusters as the first stage of photocatalytic oxidation. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	8
53	Semiempirical computational study of oxygen vacancies in a decahedral anatase nanoparticle. International Journal of Quantum Chemistry, 2019, 119, e25806.	2.0	8
54	Design of active sites in zeolite catalysts using modern semiempirical methods: The case of mordenite. Computational and Theoretical Chemistry, 2019, 1166, 112572.	2.5	7

#	Article	IF	CITATIONS
55	Benchmarking semiempirical and DFT methods for the interaction of thiophene and diethyl sulfide molecules with a Ti(OH)4(H2O) cluster. Journal of Molecular Modeling, 2017, 23, 223.	1.8	6
56	Photocatalytic Destruction of a Thiosulfonate. Topics in Catalysis, 2005, 35, 245-253.	2.8	3
57	Structure, electronic and optical properties of bilayer anatase nanoribbons. Computational Materials Science, 2018, 155, 266-281.	3.0	3
58	Photocatalytic Transformations of Sulfur-Based Organic Compounds. Nanostructure Science and Technology, 2010, , 579-621.	0.1	2
59	Computational Models of (001) Faceted Anatase TiO 2 Nanoparticles. Journal of Chemical Technology and Biotechnology, 2020, 95, 2750.	3.2	2
60	Adsorption and photocatalytic oxidation of acetone and diethyl sulfide on FeOOH aerosol. Colloid Journal, 2015, 77, 11-15.	1.3	1