List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731625/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	A Kinetic Study of Photocatalytic Degradation of Phenol over Titania–Silica Mixed Oxide Materials under UV Illumination. Catalysts, 2022, 12, 193.	3.5	9
2	Machine learning in experimental materials chemistry. Catalysis Today, 2021, 371, 77-84.	4.4	36
3	How porous periodicity of mesoporous materials like TiO2-SBA-15-10 encourages photocatalytic degradation of rhodamine B: a comparative study with aperiodic TiO2-SiO2-aerogel-10. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	11
4	SnS2/TiO2 Nanocomposites for Hydrogen Production and Photodegradation under Extended Solar Irradiation. Catalysts, 2021, 11, 589.	3.5	24
5	Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production. Energies, 2021, 14, 8265.	3.1	4
6	Prediction of optoelectronic properties of Cu ₂ O using neural network potential. Physical Chemistry Chemical Physics, 2020, 22, 14910-14917.	2.8	2
7	Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Journal of Chemical Information and Modeling, 2020, 60, 1928-1935.	5.4	5
8	Synthesis of Sulfur-Doped 2D Graphitic Carbon Nitride Nanosheets for Efficient Photocatalytic Degradation of Phenol and Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 12656-12667.	8.0	124
9	Impregnation of ZnO onto a Vegetal Activated Carbon from Algerian Olive Waste: A Sustainable Photocatalyst for Degradation of Ethyl Violet Dye. International Journal of Photoenergy, 2019, 2019, 1-13.	2.5	20
10	Facile Synthesis of 1,3,5â€Triarylbenzenes and 4â€Arylâ€ <i>NH</i> â€1,2,3â€Triazoles Using Mesoporous Pdâ€M as Reusable Catalyst. European Journal of Organic Chemistry, 2019, 2019, 104-111.	ICMâ€ 4 1 2.4	16
11	Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. Journal of Controlled Release, 2018, 279, 69-78.	9.9	109
12	Interconnected ZrO2 doped ZnO/TiO2 network photoanode for dye-sensitized solar cells. Energy Reports, 2018, 4, 56-64.	5.1	22
13	TiO2-MgO mixed oxide nanomaterials for solar energy conversion. Catalysis Today, 2018, 300, 39-49.	4.4	16
14	Visible light driven photo-degradation of Congo red by TiO2ZnO/Ag: DFT approach on synergetic effect on band gap energy. Chemosphere, 2018, 213, 481-497.	8.2	39
15	Hierarchical Mesoporous RuO ₂ /Cu ₂ O Nanoparticle-Catalyzed Oxidative Homo/Hetero Azo-Coupling of Anilines. ACS Sustainable Chemistry and Engineering, 2018, 6, 11345-11352.	6.7	48
16	Enzymatic decomposition and electrochemical study of alkali lignin by laccase (Trametes versicolor) in the presence of a natural mediator (methyl syringate). New Journal of Chemistry, 2017, 41, 958-964.	2.8	12
17	Laccase–natural mediator systems for "green―synthesis of phenolic monomers from alkali lignin. Sustainable Energy and Fuels, 2017, 1, 1573-1579.	4.9	7

Nanoparticles: From Fundamentals to Applications. , 2017, , 1673-1693.

2

#	Article	IF	CITATIONS
19	Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Frontiers in Neuroscience, 2017, 11, 608.	2.8	37
20	Mechanism of Alkaline Lignin Oxidation Using Laccase-methyl Syringate Mediator System. International Journal of Chemistry, 2016, 8, 56.	0.3	6
21	A Sustainable Rural Food–Energy–Water Nexus Framework for the Northern Great Plains. Agricultural and Environmental Letters, 2016, 1, 160008.	1.2	2
22	Charge Transfer Mechanism in Titanium-Doped Microporous Silica for Photocatalytic Water-Splitting Applications. Catalysts, 2016, 6, 34.	3.5	10
23	An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst. RSC Advances, 2016, 6, 26668-26678.	3.6	35
24	Fe–SBA-15 catalyzed synthesis of 2-alkoxyimidazo[1,2-a]pyridines and screening of their in silico selectivity and binding affinity to biological targets. New Journal of Chemistry, 2016, 40, 9753-9760.	2.8	18
25	Efficient photocatalytic hydrogen evolution system by assembling earth abundant NixOy nanoclusters in cubic MCM-48 mesoporous materials. RSC Advances, 2016, 6, 59169-59180.	3.6	8
26	Solar hydrogen generation over CdS incorporated in Ti-MCM-48 mesoporous materials under visible light illumination. International Journal of Hydrogen Energy, 2016, 41, 4106-4119.	7.1	19
27	Visible-light driven oxygen evolution over CoTiO ₃ perovskites via a modified Pechini method: impact of humidity on their phase composition. CrystEngComm, 2016, 18, 868-871.	2.6	14
28	Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania. Molecules, 2015, 20, 21881-21895.	3.8	8
29	Investigation of Room Temperature Synthesis of Titanium Dioxide Nanoclusters Dispersed on Cubic MCM-48 Mesoporous Materials. Catalysts, 2015, 5, 1603-1621.	3.5	8
30	Expeditious one-pot three component synthesis of N-aryl dithiocarbamate derivatives using mesoporous Cu-materials. Tetrahedron Letters, 2015, 56, 1609-1613.	1.4	5
31	Robust and effective Ru-bipyridyl dye sensitized Ti-MCM-48 cubic mesoporous materials for photocatalytic hydrogen evolution under visible light illumination. Catalysis Communications, 2015, 65, 14-19.	3.3	13
32	Modulation of Pore Sizes of Titanium Dioxide Photocatalysts by a Facile Template Free Hydrothermal Synthesis Method: Implications for Photocatalytic Degradation of Rhodamine B. ACS Applied Materials & Interfaces, 2015, 7, 4368-4380.	8.0	94
33	Solar simulated hydrogen evolution using cobalt oxide nanoclusters deposited on titanium dioxide mesoporous materials prepared by evaporation induced self-assembly process. International Journal of Hydrogen Energy, 2015, 40, 10795-10806.	7.1	9
34	A Brief Overview of Periodic Mesoporous Materials as Robust Supports for Photocatalytic Splitting of Water. ECS Transactions, 2015, 64, 1-8.	0.5	0
35	An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Applied Catalysis B: Environmental, 2015, 174-175, 49-59.	20.2	82
36	Dye-Sensitized and Doped TiO2 Mesoporous Materials for Visible Light-Induced Photocatalytic Hydrogen Evolution. ACS Symposium Series, 2015, , 81-101.	0.5	1

#	Article	IF	CITATIONS
37	Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48. Applied Surface Science, 2015, 356, 308-316.	6.1	38
38	Sustainability Using Solar Energy: Present and Future. ACS Symposium Series, 2015, , 119-143.	0.5	3
39	Pd–Ti-MCM-48 cubic mesoporous materials for solar simulated hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 905-918.	7.1	21
40	Aging dependent phase transformation of mesostructured titanium dioxide nanomaterials prepared by evaporation-induced self-assembly process: Implications for solar hydrogen production. AIMS Materials Science, 2015, 2, 230-242.	1.4	4
41	REACTIVITY AND MORPHOLOGY OF NI, Mo, AND Ni–Mo OXIDE CLUSTERS SUPPORTED ON MCM-48 TOWARD THIOPHENE HYDRODESULPHURIZATION. Surface Review and Letters, 2014, 21, 1450060.	1.1	1
42	Removal of Hazardous Pollutants from Wastewaters: Applications of TiO ₂ -SiO ₂ Mixed Oxide Materials. Journal of Nanomaterials, 2014, 2014, 1-42.	2.7	176
43	Nanomaterials for Environmental Applications. Journal of Nanomaterials, 2014, 2014, 1-4.	2.7	24
44	Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials, 2014, 7, 2697-2746.	2.9	97
45	Magnesium Vapor Reduction of Structured Silica for Lithium Ion Battery Applications. Materials Research Society Symposia Proceedings, 2014, 1643, 1.	0.1	0
46	Preparation of TiO2–SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 127-136.	7.1	29
47	Competitive role of structural properties of titania–silica mixed oxides and a mechanistic study of the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 2014, 148-149, 394-405.	20.2	41
48	Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO ₂ dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 2014, 16, 2048-2061.	2.8	17
49	Exploration of room temperature synthesis of palladium containing cubic MCM-48 mesoporous materials. Microporous and Mesoporous Materials, 2014, 198, 1-8.	4.4	9
50	Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2014, 150-151, 138-146.	20.2	67
51	Role of solvents in the gelation process: can light scattering studies shed some light?. Journal of Sol-Gel Science and Technology, 2013, 66, 43-49.	2.4	1
52	Modulating the textural properties and photocatalytic hydrogen production activity of TiO2 by high temperature supercritical drying. International Journal of Hydrogen Energy, 2013, 38, 10215-10225.	7.1	31
53	Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	39
54	Synthesis-Dependent Oxidation State of Platinum on TiO ₂ and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. Journal of Physical Chemistry C, 2013, 117, 16850-16862.	3.1	40

#	Article	IF	CITATIONS
55	An investigation into the effect of porosities on the adsorption ofÂrhodamine B using titania–silica mixed oxide xerogels. Journal of Environmental Management, 2013, 128, 530-539.	7.8	23
56	Effectively dispersed europium oxide dopants in TiO2 aerogel supports for enhanced photocatalytic pollutant degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 269, 49-58.	3.9	36
57	Naphthalene derivatized TiO2–carbon hybrid materials for efficient photocatalytic splitting of water. Catalysis Today, 2013, 199, 8-14.	4.4	34
58	Synthesis and characterization of ligand stabilized CdS-Trititanate composite materials for visible light-induced photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 2656-2669.	7.1	23
59	Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catalysis Communications, 2013, 31, 66-70.	3.3	54
60	Facile synthesis of MOF-5 confined in SBA-15 hybrid material with enhanced hydrostability. Chemical Communications, 2013, 49, 1223.	4.1	78
61	Synthesis of mixed phase anatase-TiO2(B) by a simple wet chemical method. Materials Letters, 2013, 95, 175-177.	2.6	15
62	Exploration of the role of anions in the synthesis of Cr containing mesoporous materials at room temperature. Microporous and Mesoporous Materials, 2013, 170, 211-225.	4.4	6
63	Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Applied Catalysis B: Environmental, 2013, 136-137, 248-259.	20.2	19
64	Facile template free method for textural property modulation that enhances adsorption and photocatalytic activity of aperiodic titania supported silica materials. Applied Catalysis B: Environmental, 2013, 142-143, 119-128.	20.2	11
65	Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chemical Communications, 2013, 49, 3221.	4.1	64
66	Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catalysis Science and Technology, 2012, 2, 1737.	4.1	94
67	Visible light driven photocatalytic evolution of hydrogen from water over CdS encapsulated MCM-48 materials. RSC Advances, 2012, 2, 5754.	3.6	53
68	Lanthanide modified semiconductor photocatalysts. Catalysis Science and Technology, 2012, 2, 683.	4.1	162
69	Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water. Journal of Physical Chemistry C, 2012, 116, 1605-1613.	3.1	90
70	TiO2–SiO2 mixed oxides: Organic ligand templated controlled deposition of titania and their photocatalytic activities for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 17009-17018.	7.1	23
71	Nanotechnology: Fundamental Principles and Applications. , 2012, , 249-263.		1
72	Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. International Journal of Hydrogen Energy, 2012, 37, 8257-8267.	7.1	101

#	Article	lF	CITATIONS
73	Heterogeneous Photocatalytic Remediation of Phenol by Platinized Titania–Silica Mixed Oxides under Solar-Simulated Conditions. Journal of Physical Chemistry C, 2011, 115, 25568-25579.	3.1	13
74	Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. Journal of Physical Chemistry C, 2011, 115, 13844-13850.	3.1	236
75	Cosolvent-Induced Gelation and the Hydrothermal Enhancement of the Crystallinity of Titaniaâ^Silica Mixed Oxides for the Photocatalytic Remediation of Organic Pollutants. Journal of Physical Chemistry C, 2011, 115, 6126-6135.	3.1	29
76	Synthesis of titania–silica xerogels by co-solvent induced gelation at ambient temperature. Materials Letters, 2011, 65, 2136-2138.	2.6	11
77	Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir, 2011, 27, 4020-4028.	3.5	1,467
78	Phthalocyanine- and Calixarene-Templating Effect on the Catalytic Performance of Solid Supported Vanadates. Catalysis Letters, 2011, 141, 1086-1096.	2.6	4
79	Synthesis of substituted acetylenes, aryl–alkyl ethers, 2-alkene-4-ynoates and nitriles using heterogeneous mesoporous Pd-MCM-48 as reusable catalyst. Tetrahedron, 2011, 67, 5717-5724.	1.9	25
80	Photoinduced charge separation in microporous and mesoporous materials. Canadian Journal of Chemistry, 2011, 89, 257-265.	1.1	3
81	Mesoporous Titanium Dioxide. ACS Symposium Series, 2010, , 97-123.	0.5	8
82	Rapid and facile synthesis of Ti-MCM-48 mesoporous material and the photocatalytic performance for hydrogen evolution. International Journal of Hydrogen Energy, 2010, 35, 5276-5283.	7.1	68
83	Baeyer–Villiger oxidation of cyclic ketones using Fe containing MCM-48 cubic mesoporous materials. Journal of Molecular Catalysis A, 2010, 330, 66-72.	4.8	47
84	Photocatalytic degradation of aqueous organic pollutants using titania supported periodic mesoporous silica. Energy and Environmental Science, 2010, 3, 608.	30.8	27
85	Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Organic and Biomolecular Chemistry, 2010, 8, 4316.	2.8	57
86	Synthesis, Structural Characterization, and Photocatalytic Performance of Mesoporous W-MCM-48. Journal of Physical Chemistry C, 2010, 114, 15728-15734.	3.1	46
87	Baeyer-Villiger oxidation of cyclic ketones over iron-containing mesoporous MCM-48 silica materials. Reaction Kinetics and Catalysis Letters, 2008, 95, 239-245.	0.6	15
88	Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 2008, 279, 71-76.	1.8	1,392
89	Rapid and facile synthesis of siliceous MCM-48 mesoporous materials. Chemical Communications, 2007, , 4543.	4.1	42
90	A review of the chemical manipulation of nanomaterials using solvents: Gelation dependent structures. Journal of Sol-Gel Science and Technology, 2006, 40, 335-339.	2.4	17

#	Article	IF	CITATIONS
91	Catalysis by Metal Oxides. , 2006, , 39-62.		1
92	Visible-light photooxidation of trichloroethylene by Cr–Al-MCM-41. Journal of Catalysis, 2005, 230, 158-165.	6.2	42
93	Single-Step Synthesis of a Highly Active Visible-Light Photocatalyst for Oxidation of a Common Indoor Air Pollutant: Acetaldehyde. Advanced Materials, 2005, 17, 2467-2471.	21.0	117
94	Solvent Effects in the Hydrolysis of Magnesium Methoxide, and the Production of Nanocrystalline Magnesium Hydroxide. An Aid in Understanding the Formation of Porous Inorganic Materials. Chemistry of Materials, 2005, 17, 65-73.	6.7	77
95	Amphiphilic Templating of Magnesium Hydroxide. Langmuir, 2005, 21, 12386-12394.	3.5	17
96	Synthesis of Mesoporous Aluminophosphate (AlPO) and Investigation of Zirconium Incorporation into Mesoporous AlPOs. Journal of Physical Chemistry B, 2005, 109, 9284-9293.	2.6	16
97	Photoionization of methylphenothiazine and photoluminescence of erbium 8-hydroxyquinolinate in transparent mesoporous silica films by spin-coating on silicon. Microporous and Mesoporous Materials, 2004, 67, 265-271.	4.4	13
98	Photoelectrochemical reduction of nitrite ions to ammonia on CdS photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 154, 299-302.	3.9	27
99	Photoinduced Charge Separation of Pyrene in Chromium Containing Silicoaluminophosphate (SAPO-5) Microporous Materials at Room Temperature. Journal of Physical Chemistry B, 2003, 107, 2610-2617.	2.6	12
100	Photoionization of Methylphenothiazine in Palladium Ion-Exchanged SAPO-5 and SAPO-11 Silicoaluminophosphate Microporous Materials at Room Temperature. Journal of Physical Chemistry B, 2002, 106, 583-588.	2.6	6
101	Photoreduction of Methyl Viologen in Zeolite X. Journal of Physical Chemistry B, 2002, 106, 1104-1109.	2.6	34
102	Photoinduced Charge Separation of N,N,Nâ€~Nâ€~-Tetramethylbenzidine in Chromium Ion-Exchanged Zeolite X at Room Temperature. Journal of Physical Chemistry B, 2002, 106, 9306-9312.	2.6	14
103	Photoionization of 10-Methylphenothiazine,N,N,Nâ€~,Nâ€~-Tetramethylbenzidine, and Pyrene in Crâ^'AlMCM-41 Molecular Sieves. Journal of Physical Chemistry B, 2002, 106, 6251-6257.	2.6	1
104	Structural Characterization and Study of Adsorbate Interactions with Cu(II) Ions in SBA-15 Materials by Electron Spin Resonance and Electron Spinâ~Echo Modulation Spectroscopies. Journal of Physical Chemistry B, 2002, 106, 6913-6920.	2.6	15
105	Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation ofp-Chlorophenoxyacetic Acid. Environmental Science & Technology, 2001, 35, 1544-1549.	10.0	298
106	Photoionization of N,N,N′N′-tetramethylbenzidine in chromium silicoaluminophosphate microporous materials. Physical Chemistry Chemical Physics, 2001, 3, 2921-2927.	2.8	10
107	Photoinduced charge separation of N,N,N′,N′-tetramethyl- p-phenylenediamine and N,N,N′,N′-tetramethylbenzidine in synthetic M-mordenite (M = H+, Na+, Na++K+) molecular sieves. Chemistry Chemical Physics, 2001, 3, 5602-5606.	. Panysical	3
108	Photooxidation of alkylphenothiazines in SiMCM-48, AlMCM-48 and VMCM-48 mesoporous molecular sieves. Physical Chemistry Chemical Physics, 2001, 3, 1699-1704.	2.8	15

#	Article	IF	CITATIONS
109	Photoinduced Charge Separation of Nâ^'Alkylphenothiazines in X Zeolites. Journal of Physical Chemistry B, 2001, 105, 118-122.	2.6	6
110	An N,N′-dialkyl-4,4′-bipyridinium-modified titanium-dioxide photocatalyst for water remediation – observation and application of supramolecular effects in photocatalytic degradation of π-donor organic compounds. Fresenius' Journal of Analytical Chemistry, 2001, 371, 621-628.	1.5	6
111	A photoactivated â€~molecular train' for optoelectronic applications: light-stimulated translocation of a l²-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode. Journal of Electroanalytical Chemistry, 2001, 497, 172-177.	3.8	187
112	Lanthanide Oxide Doped Titanium Dioxide Photocatalysts: Effective Photocatalysts for the Enhanced Degradation of Salicylic Acid and t-Cinnamic Acid. Journal of Catalysis, 2001, 204, 305-313.	6.2	202
113	Electron paramagnetic resonance and diffuse reflectance spectroscopic studies of the photoionization of N-alkylphenothiazines in synthetic microporous M-clinoptilolite (M = Na+ + K+, H+,) Tj ETQq1 Physics. 2000. 2, 3335-3339.	1 0.78431 2.8	.4 rgBT /Ove
114	Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chemical Communications, 2000, , 1025-1026.	4.1	146
115	Photoinduced Charge Separation of Methylphenothiazine in Vanadium- and Titanium-Containing AlPO-5 and AlPO-11. Journal of Physical Chemistry B, 2000, 104, 5579-5585.	2.6	19
116	Photoionization ofN-Alkylphenothiazines in Mesoporous Metal Silicoaluminophosphate Molecular Sieves. Journal of Physical Chemistry B, 2000, 104, 9661-9669.	2.6	22
117	Photoinduced Charge Separation of Methylphenothiazine in Microporous Metal Silicoaluminophosphate Mâ^'SAPO-n(M = Cr, Fe, Mn,n= 5, 8, 11) Materials. Journal of Physical Chemistry B, 2000, 104, 7981-7986.	2.6	12
118	Modified Titanium Dioxide Photocatalysts for the Enhanced Photodegradation of Organic Substrates. Research on Chemical Intermediates, 1999, 25, 733-756.	2.7	11
119	Title is missing!. Journal of Materials Science, 1999, 34, 5273-5280.	3.7	83
120	Adjustable electroluminescence: blue-green to red organic light-emitting diodes based on novel poly-non-conjugated oligomers. Synthetic Metals, 1999, 107, 85-91.	3.9	15
121	Iron(III) Phthalocyanine-Modified Titanium Dioxide:Â A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants. Journal of Physical Chemistry B, 1998, 102, 9397-9403.	2.6	101
122	A β-amino-cyclodextrin monolayer-modified Au electrode: a command surface for the amperometric and microgravimetric transduction of optical signals recorded by a photoisomerizable bipyridinium–azobenzene diad. Chemical Communications, 1997, , 259-260.	4.1	59
123	Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 73-78.	3.9	94
124	Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 79-84.	3.9	195
125	Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107, 215-220.	3.9	66
126	Microperoxidase-11-mediated reduction of hemoproteins: electrocatalyzed reduction of cytochrome c, myoglobin and hemoglobin and electrocatalytic reduction of nitrate in the presence of cytochrome-dependent nitrate reductase. Journal of Electroanalytical Chemistry, 1997, 430, 227-233.	3.8	50

#	Article	IF	CITATIONS
127	Formation of Supramolecular Donor–Acceptor Complexes between Bis(pyridiniomethyl)azobenzenes and Eosin in Solutions and at Solid Interfaces: Transduction into Optical and Microgravimetric Signals. Angewandte Chemie International Edition in English, 1997, 36, 147-150.	4.4	31
128	Light‣timulated Formation and Dissociation of Supramolecular Donor–Acceptor Complexes between Eosin and Bipyridinium Azobenzenes: Design of Molecular Electronic Devices for the Piezoelectrical Transduction of Recorded Optical Signals. Israel Journal of Chemistry, 1996, 36, 407-419.	2.3	10
129	Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 96, 181-185.	3.9	131
130	Enhanced photocatalytic degradation of π-donor organic compounds by N,N′-dialkyl-4,4′-bipyridinium-modified TiO2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 99, 185-189.	3.9	15
131	Photocatalytic reduction of nitrite and nitrate ions over TiO2 semiconductors. Journal of Materials Science Letters, 1996, 15, 874-877.	0.5	11
132	Photocatalytic reduction of nitrite on CdS. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 86, 185-189.	3.9	30
133	Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89, 67-68.	3.9	61
134	Photocatalytic reduction of nitrite and nitrate on ZnS. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 81, 55-58.	3.9	40