John A Raven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731156/publications.pdf

Version: 2024-02-01

275 papers 26,178 citations

81 h-index ⁷⁹⁵⁰
149
g-index

290 all docs

290 docs citations

times ranked

290

21743 citing authors

#	Article	IF	CITATIONS
1	The Evolution of Modern Eukaryotic Phytoplankton. Science, 2004, 305, 354-360.	12.6	1,287
2	CO2CONCENTRATING MECHANISMS IN ALGAE: Mechanisms, Environmental Modulation, and Evolution. Annual Review of Plant Biology, 2005, 56, 99-131.	18.7	1,238
3	Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 2008, 23, 95-103.	8.7	1,092
4	Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 2017, 29, 949-982.	2.8	984
5	Opportunities for improving phosphorusâ€use efficiency in crop plants. New Phytologist, 2012, 195, 306-320.	7.3	702
6	Temperature and algal growth. New Phytologist, 1988, 110, 441-461.	7.3	624
7	Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature, 2001, 411, 66-69.	27.8	588
8	THE TRANSPORT AND FUNCTION OF SILICON IN PLANTS. Biological Reviews, 1983, 58, 179-207.	10.4	553
9	The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research, 1999, 60, 111-150.	2.9	545
10	Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography, 2016, 61, 165-197.	3.1	475
11	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	12.8	406
12	The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytologist, 1988, 109, 279-287.	7.3	374
13	Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 2013, 35, 3-11.	1.8	344
14	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2010, 334, 11-31.	3.7	323
15	Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytologist, 1990, 116, 1-18.	7. 3	317
16	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	1.5	290
17	The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 2004, 43, 26-40.	1.4	285
18	Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology, 2002, 29, 355.	2.1	284

#	Article	IF	Citations
19	Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 2001, 7, 849-882.	9.5	281
20	The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2641-2650.	4.0	281
21	The cost of photoinhibition. Physiologia Plantarum, 2011, 142, 87-104.	5.2	263
22	Selection pressures on stomatal evolution. New Phytologist, 2002, 153, 371-386.	7.3	262
23	Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7737-E7745.	7.1	244
24	Algal evolution in relation to atmospheric CO ₂ : carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 493-507.	4.0	231
25	Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnology and Oceanography, 1991, 36, 1701-1714.	3.1	226
26	Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research, 2011, 109, 281-296.	2.9	218
27	Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research, 2014, 121, 111-124.	2.9	199
28	A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytologist, 1992, 121, 19-32.	7.3	197
29	TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS (sup > 1 < /sup > . Journal of Phycology, 2009, 45, 1236-1251.	2.3	194
30	Genomics and chloroplast evolution: what did cyanobacteria do for plants?. Genome Biology, 2003, 4, 209.	9.6	190
31	The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytologist, 1990, 116, 505-529.	7.3	176
32	The future of the northeast <scp>A</scp> tlantic benthic flora in a high <scp>CO</scp> ₂ world. Ecology and Evolution, 2014, 4, 2787-2798.	1.9	176
33	Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Canadian Journal of Botany, 1991, 69, 908-924.	1.1	173
34	Cycling silicon - the role of accumulation in plants. New Phytologist, 2003, 158, 419-421.	7.3	167
35	Free-radical-induced mutation vs redox regulation: Costs and benefits of genes in organelles. Journal of Molecular Evolution, 1996, 42, 482-492.	1.8	166
36	C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control. Plant Physiology, 2007, 145, 230-235.	4.8	166

#	Article	IF	CITATIONS
37	The effects of reduced and elevated CO 2 and O 2 on the seaweed Lomentaria articulata. Plant, Cell and Environment, 1999, 22, 1303-1310.	5.7	164
38	Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change, 2012, 2, 510-513.	18.8	158
39	Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 2018, 217, 1420-1427.	7. 3	154
40	Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia, 1989, 78, 97-105.	2.0	150
41	Algae lacking carbon-concentrating mechanisms. Canadian Journal of Botany, 2005, 83, 879-890.	1.1	145
42	Speedy small stomata?. Journal of Experimental Botany, 2014, 65, 1415-1424.	4.8	144
43	<scp>R</scp> ubisco: still the most abundant protein of Earth?. New Phytologist, 2013, 198, 1-3.	7.3	143
44	Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research, 2012, 113, 105-125.	2.9	142
45	BIOCHEMICAL DISPOSAL OF EXCESS H+ IN GROWING PLANTS?. New Phytologist, 1986, 104, 175-206.	7.3	141
46	Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist, 2009, 181, 295-309.	7.3	138
47	A REVISED ESTIMATE OF THE IRON USE EFFICIENCY OF NITROGEN FIXATION, WITH SPECIAL REFERENCE TO THE MARINE CYANOBACTERIUMTRICHODESMIUMSPP. (CYANOPHYTA) 1. Journal of Phycology, 2003, 39, 12-25.	2.3	136
48	An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74, 281-293.	2.9	135
49	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
50	THE ROLE OF VACUOLES. New Phytologist, 1987, 106, 357-422.	7.3	130
51	Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynthesis Research, 2010, 106, 123-134.	2.9	125
52	Low levels of ribosomal <scp>RNA</scp> partly account for the very high photosynthetic phosphorusâ€use efficiency of <scp>P</scp> roteaceae species. Plant, Cell and Environment, 2014, 37, 1276-1298.	5.7	121
53	Carbon acquisition by diatoms. Photosynthesis Research, 2007, 93, 79-88.	2.9	120
54	Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports, 2017, 7, 46297.	3.3	119

#	Article	IF	Citations
55	The role of CO 2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid lifeâ€form: a review, with new data on Eriocaulon decangulare L New Phytologist, 1988, 108, 125-148.	7.3	118
56	Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia, 1982, 53, 68-78.	2.0	117
57	Putting the C in phycology. European Journal of Phycology, 1997, 32, 319-333.	2.0	117
58	Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, 1984, 310, 694-695.	27.8	116
59	NEW LIGHT ON THE SCALING OF METABOLIC RATE WITH THE SIZE OF ALGAE. Journal of Phycology, 2002, 38, 11-16.	2.3	113
60	A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 2014, 24, 652-657.	3.9	113
61	The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany, 2017, 68, 3701-3716.	4.8	111
62	Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. Journal of Experimental Botany, 2009, 60, 3975-3987.	4.8	108
63	Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 2014, 118, 45-61.	1.6	108
64	Physiological correlates of the morphology of early vascular plants. Botanical Journal of the Linnean Society, 1984, 88, 105-126.	1.6	105
65	IS THE GROWTH RATE HYPOTHESIS APPLICABLE TO MICROALGAE?1. Journal of Phycology, 2010, 46, 1-12.	2.3	105
66	Inorganic carbon acquisition by Xiphophora chondrophylla (Phaeophyta, Fucales). Phycologia, 1996, 35, 83-89.	1.4	104
67	Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynthesis Research, 2003, 77, 155-171.	2.9	103
68	An Anaplerotic Role for Mitochondrial Carbonic Anhydrase in Chlamydomonas reinhardtii. Plant Physiology, 2003, 132, 2126-2134.	4.8	103
69	The Response of Thalassiosira pseudonana to Long-Term Exposure to Increased CO2 and Decreased pH. PLoS ONE, 2011, 6, e26695.	2.5	103
70	The ins and outs of CO ₂ . Journal of Experimental Botany, 2016, 67, 1-13.	4.8	102
71	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2011, 348, 7-27.	3.7	99
72	Microbial rhodopsins are major contributors to the solar energy captured in the sea. Science Advances, 2019, 5, eaaw8855.	10.3	97

#	Article	IF	CITATIONS
73	Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiology Journal, 2010, 27, 491-519.	2.0	96
74	INORGANIC CARBON ACQUISITION BY CHRYSOPHYTES < sup>1 < /sup>. Journal of Phycology, 2009, 45, 1052-1061.	2.3	94
75	SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS BY THREE SPECIES OF MARINE DIATOM1. Journal of Phycology, 1997, 33, 433-440.	2.3	91
76	Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Annals of Botany, 2002, 90, 525-536.	2.9	90
77	How do marine diatoms fix 10 billion tonnes of inorganic carbon per year?. Canadian Journal of Botany, 2005, 83, 898-908.	1.1	90
78	THE ENERGETICS OF FRESHWATER ALGAE; ENERGY REQUIREMENTS FOR BIOSYNTHESIS AND VOLUME REGULATION. New Phytologist, 1982 , 92 , $1\text{-}20$.	7.3	89
79	THE EVOLUTION OF VASCULAR PLANTS IN RELATION TO QUANTITATIVE FUNCTIONING OF DEAD WATER ONDUCTING CELLS AND STOMATA. Biological Reviews, 1993, 68, 337-363.	10.4	89
80	Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae, 2020, 91, 101594.	4.8	88
81	GROWTH, PHOTOSYNTHESIS AND MAINTENANCE METABOLIC COST IN THE DIATOM <i>PHAEODACTYLUM TRICORNUTUM </i> AT VERY LOW LIGHT LEVELS ^{1 < sup>. Journal of Phycology, 1986, 22, 39-48.}	2.3	87
82	Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecology Letters, 2020, 23, 722-733.	6.4	86
83	Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia, 1990, 82, 68-80.	2.0	85
84	Exploring Cyanobacterial Mutualisms. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 255-273.	8.3	85
85	Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2551-2559.	7.1	85
86	Macroalgal growth in nutrient-enriched estuaries: A biogeochemical and evolutionary perspective. Water, Air and Soil Pollution, 2003, 3, 7-26.	0.8	83
87	Adaptation, Acclimation and Regulation in Algal Photosynthesis. Advances in Photosynthesis and Respiration, 2003, , 385-412.	1.0	83
88	A Metabolomic Approach to Study Major Metabolite Changes during Acclimation to Limiting CO2 in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2010, 154, 187-196.	4.8	80
89	Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications, 2021, 12, 2556.	12.8	79
90	Why are there no picoplanktonic O2 evolvers with volumes less than 10â^19 m3?. Journal of Plankton Research, 1994, 16, 565-580.	1.8	78

#	Article	IF	Citations
91	Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Science, 2012, 188-189, 25-35.	3.6	78
92	Responses of aquatic photosynthetic organisms to increased solar UVB. Journal of Photochemistry and Photobiology B: Biology, 1991, 9, 239-244.	3.8	77
93	Photosynthesis in a marine diatom. Nature, 2001, 412, 40-41.	27.8	77
94	Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnology and Oceanography, 2009, 54, 823-836.	3.1	76
95	The analysis of photosynthesis in air and water of Ascophyllum nodosum (L.) Le Jol Oecologia, 1986, 69, 288-295.	2.0	73
96	Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of Botany, 2005, 83, 859-864.	1,1	73
97	The Algal Revolution. Trends in Plant Science, 2017, 22, 726-738.	8.8	73
98	THE INTERACTION BETWEEN INORGANIC CARBON ACQUISITION AND LIGHT SUPPLY IN PALMARIA PALMATA (RHODOPHYTA)1. Journal of Phycology, 1995, 31, 369-375.	2.3	72
99	A Large Population of Small Chloroplasts in Tobacco Leaf Cells Allows More Effective Chloroplast Movement Than a Few Enlarged Chloroplasts. Plant Physiology, 2002, 129, 112-121.	4.8	70
100	Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170664.	2.6	63
101	Could landâ€based early photosynthesizing ecosystems have bioengineered the planet in midâ€Palaeozoic times?. Palaeontology, 2015, 58, 803-837.	2.2	62
102	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	1.3	62
103	Ammonia and ammonium fluxes between photolithotrophs and the environment in relation to the global nitrogen cycle. New Phytologist, 1992, 121, 5-18.	7. 3	58
104	Global aspects of C/N interactions determining plant-environment interactions. Journal of Experimental Botany, 2003, 55, $11-25$.	4.8	58
105	Cryptic Photosynthesis—Extrasolar Planetary Oxygen Without a Surface Biological Signature. Astrobiology, 2009, 9, 623-636.	3.0	58
106	DARK CARBON FIXATION STUDIES ON THE INTERTIDAL MACROALGA <i>ASCOPHYLLUM NODOSUM</i> (PHAEOPHYTA) ¹ . Journal of Phycology, 1986, 22, 78-83.	2.3	57
107	RNA function and phosphorus use by photosynthetic organisms. Frontiers in Plant Science, 2013, 4, 536.	3.6	56
108	Impact of irradiance on the C allocation in the coastal marine diatom <i>Skeletonema marinoi</i> Sarno and Zingone*. Plant, Cell and Environment, 2011, 34, 1666-1677.	5.7	55

#	Article	IF	CITATIONS
109	Genomes at the interface between bacteria and organelles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 5-18.	4.0	54
110	The early evolution of land plants: Aquatic ancestors and atmospheric interactions. Botanical Journal of Scotland, 1995, 47, 151-175.	0.3	53
111	Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms. Advances in Photosynthesis and Respiration, 2003, , 225-244.	1.0	53
112	Photosynthesis in watercolours. Nature, 2007, 448, 418-418.	27.8	53
113	Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 2022, 58, 347-363.	2.3	53
114	Transport and assimilation of inorganic carbon by Lichina pygmaea under emersed and submersed conditions. New Phytologist, 1990, 114, 407-417.	7.3	52
115	PROCESSES LIMITING PHOTOSYNTHETIC CONDUCTANCE., 1981,, 109-136.		52
116	Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity. Geomicrobiology Journal, 2010, 27, 572-584.	2.0	51
117	IMPACT OF TAXONOMY, GEOGRAPHY, AND DEPTH ON Î' ¹³ C AND Î' ¹⁵ N VARIATION IN A LARGE COLLECTION OF MACROALGAE ¹ . Journal of Phycology, 2011, 47, 1023-1035.	A _{2.3}	49
118	Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 2014, 13, 229-243.	1.6	49
119	Enhanced biofuel production using optimality, pathway modification and waste minimization. Journal of Applied Phycology, 2015, 27, 1-31.	2.8	49
120	REPAIR OF PHOTOINHIBITORY DAMAGE IN ANACYSTIS NIDULANS 625 (SYNECHOCOCCUS 6301): RELATION TO CATALYTIC CAPACITY FOR, AND ENERGY SUPPLY TO, PROTEIN SYNTHESIS, AND IMPLICATIONS FOR mumax AND THE EFFICIENCY OF LIGHT-LIMITED GROWTH. New Phytologist, 1986, 103, 625-643.	7.3	48
121	The role of marine biota in the evolution of terrestrial biota: Gases and genes. Biogeochemistry, 1997, 39, 139-164.	3.5	48
122	Interactions of photosynthesis with genome size and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120264.	4.0	48
123	Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany, 2017, 68, 3773-3784.	4.8	48
124	Carbon dioxide as the exogenous inorganic carbon source forBatrachospermumandLemanea. British Phycological Journal, 1981, 16, 165-175.	1.2	46
125	HOW BENTHIC MACROALGAE COPE WITH FLOWING FRESHWATER: RESOURCE ACQUISITION AND RETENTION. Journal of Phycology, 1992, 28, 133-146.	2.3	46
126	Ozone and life on the Archaean Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1889-1901.	3.4	46

#	Article	IF	CITATIONS
127	Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiologia Plantarum, 2008, 133, 4-14.	5.2	46
128	PRIMARY CARBON AND NITROGEN METABOLIC GENE EXPRESSION IN THE DIATOM (i>THALASSIOSIRA PSEUDONANA (i) (BACILLARIOPHYCEAE): DIEL PERIODICITY AND EFFECTS OF INORGANIC CARBON AND NITROGEN (sup>1 (/sup>. Journal of Phycology, 2009, 45, 1083-1092.	2.3	46
129	Inorganic carbon accumulation by the marine diatomPhaeodactylum tricornutum. European Journal of Phycology, 1996, 31, 285-290.	2.0	45
130	Growth rate affects the responses of the green alga <scp><i>T</i></scp> <i>etraselmis suecica</i> to external perturbations. Plant, Cell and Environment, 2014, 37, 512-519.	5.7	45
131	Polar auxin transport in relation to long-distance transport of nutrients in the Charales: Table 1 Journal of Experimental Botany, 2013, 64, 1-9.	4.8	43
132	Active water transport in unicellular algae: where, why, and how. Journal of Experimental Botany, 2014, 65, 6279-6292.	4.8	43
133	Biological Approaches to Global Environment Change Mitigation and Remediation. Current Biology, 2009, 19, R615-R623.	3.9	42
134	Chloride: essential micronutrient and multifunctional beneficial ion. Journal of Experimental Botany, 2017, 38, erw421.	4.8	42
135	Algae. Current Biology, 2014, 24, R590-R595.	3.9	41
136	Blue carbon: past, present and future, with emphasis on macroalgae. Biology Letters, 2018, 14, 20180336.	2.3	41
137	Functional evolution of photochemical energy transformations in oxygen-producing organisms. Functional Plant Biology, 2009, 36, 505.	2.1	41
138	Oxygen Consumption: Photorespiration and Chlororespiration. Advances in Photosynthesis and Respiration, 2003, , 157-181.	1.0	40
139	Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. European Journal of Phycology, 2003, 38, 47-53.	2.0	40
140	The evolution of autotrophy in relation to phosphorus requirement. Journal of Experimental Botany, 2013, 64, 4023-4046.	4.8	40
141	Influence of changes in CO2 concentration and temperature on marine phytoplankton 13C/12C ratios: an analysis of possible mechanisms. Global and Planetary Change, 1993, 8, 1-12.	3 . 5	39
142	Evolution of tree nutrition. Tree Physiology, 2010, 30, 1050-1071.	3.1	38
143	The possible roles of algae in restricting the increase in atmospheric CO ₂ and global temperature. European Journal of Phycology, 2017, 52, 506-522.	2.0	38
144	Terrestrial rhizophytes and H+ currents circulating over at least a millimetre: an obligate relationship?. New Phytologist, 1991, 117, 177-185.	7.3	36

#	Article	IF	CITATIONS
145	The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix. PLoS ONE, 2014, 9, e86047.	2.5	36
146	Limitations on microalgal growth at very low photon fluence rates: the role of energy slippage. Photosynthesis Research, 2006, 88, 299-310.	2.9	35
147	Photosynthesis in reproductive structures: costs and benefits. Journal of Experimental Botany, 2015, 66, 1699-1705.	4.8	35
148	What is the limit for photoautotrophic plankton growth rates?. Journal of Plankton Research, 2017, 39, 13-22.	1.8	35
149	Intraspecific chemical communication in microalgae. New Phytologist, 2017, 215, 516-530.	7.3	34
150	The C4-like characteristics of the intertidal macroalga Ascophyllum nodosum (L.) Le Jolis (Fucales,) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
151	Influences of different nitrogen sources on nitrogen- and water-use efficiency, and carbon isotope discrimination, in C 3 Triticum aestivum L. and C 4 Zea mays L. plants. Planta, 1998, 205, 574-580.	3.2	33
152	The mixotrophic nature of photosynthetic plants. Functional Plant Biology, 2013, 40, 425.	2.1	33
153	Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia, 2006, 45, 442-449.	1.4	32
154	Energy, genes and evolution: introduction to an evolutionary synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120253.	4.0	32
155	Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling. Journal of Plankton Research, 2015, 37, 683-691.	1.8	32
156	Physiological evolution of lower embryophytes. , 2004, , 17-41.		32
157	Intercellular Transport and Cytoplasmic Streaming inChara hispida. Journal of Experimental Botany, 1984, 35, 1016-1021.	4.8	31
158	Photosynthetic inorganic carbon assimilation byPrasiola stipitata(Prasiolales, Chlorophyta) under emersed and submersed conditions: Relationship to the taxonomy ofPrasiola. British Phycological Journal, 1991, 26, 247-257.	1.2	31
159	Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri. Photosynthesis Research, 2018, 136, 147-160.	2.9	31
160	The intrinsic permeability of biological membranes to H+: Significance for the efficiency of low rates of energy transformation. FEMS Microbiology Letters, 1981, 10, 1-5.	1.8	30
161	Photosynthetic carbon assimilation by Crassula helmsii. Oecologia, 1995, 101, 494-499.	2.0	29
162	Carbohydrate Metabolism and Respiration in Algae. Advances in Photosynthesis and Respiration, 2003, , 205-224.	1.0	29

#	Article	IF	Citations
163	Carbon Acquisition by Microalgae. , 2016, , 89-99.		29
164	Combined Nitrogen. , 2016, , 143-154.		29
165	NONEQUILIBRIUM RATES OF PHOTOSYNTHESIS AND RESPIRATION UNDER DYNAMIC LIGHT SUPPLY1. Journal of Phycology, 1996, 32, 963-969.	2.3	28
166	Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis. Bioresource Technology, 2014, 167, 521-529.	9.6	28
167	Photosynthetic oscillation in individual cells of the marine diatom Coscinodiscus wailesii (Bacillariophyceae) revealed by microsensor measurements. Photosynthesis Research, 2007, 95, 37-44.	2.9	27
168	Limits to Phototrophic Growth in Dense Culture: CO2 Supply and Light. , 2013, , 91-97.		27
169	Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton. Journal of Phycology, 2016, 52, 239-251.	2.3	27
170	Iron acquisition and allocation in stramenopile algae. Journal of Experimental Botany, 2013, 64, 2119-2127.	4.8	26
171	Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant, Cell and Environment, 2015, 38, 2313-2317.	5.7	26
172	Potential negative effects of ocean afforestation on offshore ecosystems. Nature Ecology and Evolution, 2022, 6, 675-683.	7.8	26
173	Inorganic carbon acquisition by red seaweeds grown under dynamic light regimes. Hydrobiologia, 1996, 326-327, 401-406.	2.0	25
174	Carbon Sequestration: Photosynthesis and Subsequent Processes. Current Biology, 2006, 16, R165-R167.	3.9	25
175	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216, 670-681.	7.3	25
176	Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160400.	4.0	25
177	The Bigger The Fewer: Size, Taxonomic Diversity and The Range of Chlorophyll(Ide) Pigments in Oxygen-Evolving Marine Photolithotrophs. Journal of the Marine Biological Association of the United Kingdom, 1996, 76, 211-217.	0.8	24
178	Inorganic carbon acquisition by Hormosira banksii (Phaeophyta: Fucales) and its epiphyte Notheia anomala (Phaeophyta: Fucales). Phycologia, 1995, 34, 267-277.	1.4	23
179	Role of Sulfur for Algae: Acquisition, Metabolism, Ecology and Evolution. Advances in Photosynthesis and Respiration, 2008, , 397-415.	1.0	21
180	Solute transport at the plasmalemma and the early evolution of cells. BioSystems, 1982, 15, 13-26.	2.0	20

#	Article	IF	Citations
181	Half a Century of Pursuing the Pervasive Proton. Progress in Botany Fortschritte Der Botanik, 2013, , 3-34.	0.3	20
182	Protein elemental sparing and codon usage bias are correlated among bacteria. Molecular Ecology, 2012, 21, 2480-2487.	3.9	19
183	A comparison of the impacts of various nitrogen sources on acid-base balance in C3Triticum aestivumL. and C4Zea maysL. plants. Journal of Experimental Botany, 1997, 48, 315-324.	4.8	18
184	CELLULAR LOCATION OF STARCH SYNTHESIS AND EVOLUTIONARY ORIGIN OF STARCH GENES. Journal of Phycology, 2005, 41, 1070-1072.	2.3	18
185	Î 13C and Î 15N values in reef corals Porites lutea and P. cylindrica and in their epilithic and endolithic algae. Marine Biology, 2008, 155, 353-361.	1.5	18
186	Photosynthesis in Early Land Plants: Adapting to the Terrestrial Environment. Advances in Photosynthesis and Respiration, 2014, , 29-58.	1.0	18
187	<i>Gloeobacter</i> and the implications of a freshwater origin of Cyanobacteria. Phycologia, 2021, 60, 402-418.	1.4	18
188	Influence of global environmental Change on plankton. Journal of Plankton Research, 2021, 43, 779-800.	1.8	18
189	Can plants rely on nitrate?. Trends in Plant Science, 2003, 8, 314-315.	8.8	17
190	Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae. ChemSusChem, 2015, 8, 2727-2736.	6.8	17
191	ALGAL MODEL SYSTEMS AND THE ELUCIDATION OF PHOTOSYNTHETIC METABOLISM. Journal of Phycology, 2001, 37, 943-950.	2.3	16
192	The luggage hypothesis: Comparisons of two phototrophic hosts with nitrogen-fixing cyanobacteria and implications for analogous life strategies for kleptoplastids/secondary symbiosis in dinoflagellates. Symbiosis, 2009, 49, 61-70.	2.3	16
193	Cells inside Cells: Symbiosis and Continuing Phagotrophy. Current Biology, 2013, 23, R530-R531.	3.9	16
194	Cyanobacteria vs green algae: which group has the edge?. Journal of Experimental Botany, 2017, 68, 3697-3699.	4.8	16
195	Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus <i>in vivo</i> . New Phytologist, 2020, 227, 334-342.	7.3	16
196	The Occurrence of diel changes in titratable acidity of plant Cell Contents: indications of CAM-like metabolism in plants native to Scotland and comparisons with plants from elsewhere. Transactions of the Botanical Society of Edinburgh, 1988, 45, 235-244.	0.1	15
197	Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red macroalgae. Botanical Journal of Scotland, 2001, 53, 33-43.	0.3	15
198	Phosphorus and the future. Plant Ecophysiology, 2008, , 271-283.	1.5	15

#	Article	IF	CITATIONS
199	Life at the boundary: photosynthesis at the soil–fluid interface. A synthesis focusing on mosses: Table 1 Journal of Experimental Botany, 2016, 67, 1613-1623.	4.8	15
200	Sensing inorganic carbon: CO2 and HCO3â°. Biochemical Journal, 2006, 396, e5-7.	3.7	14
201	Not drowning but photosynthesizing: probing plant plastrons. New Phytologist, 2008, 177, 841-845.	7.3	14
202	Implications of mutation of organelle genomes for organelle function and evolution. Journal of Experimental Botany, 2015, 66, 5639-5650.	4.8	14
203	Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms. Journal of Experimental Botany, 2017, 68, 2683-2692.	4.8	14
204	Evolution and palaeophysiology of the vascular system and other means of long-distance transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160497.	4.0	14
205	Regional variation in \hat{l} (scp> (sup>C of coral reef macroalgae. Limnology and Oceanography, 2020, 65, 2291-2302.	3.1	14
206	Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. New Phytologist, 2021, 229, 2647-2659.	7.3	14
207	Algae on the move. Transactions of the Botanical Society of Edinburgh, 1988, 45, 167-186.	0.1	13
208	Carbon and nitrogen allocation patterns in two intertidal fucoids: Fucus serratus and Himanthalia elongata (Phaeophyta). European Journal of Phycology, 1998, 33, 307-313.	2.0	13
209	Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans. , 0, , 247-272.		13
210	Transpiration: how many functions?. New Phytologist, 2008, 179, 905-907.	7.3	13
211	Cyanotoxins: A Poison that Frees Phosphate. Current Biology, 2010, 20, R850-R852.	3.9	13
212	Dark Respiration and Organic Carbon Loss. , 2016, , 129-140.		13
213	Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 31-43.	3.8	13
214	Photosynthesis and Metabolism of Seagrasses. , 2018, , 315-342.		13
215	Inorganic carbon concentrating mechanisms in freeâ€living and symbiotic dinoflagellates and chromerids. Journal of Phycology, 2020, 56, 1377-1397.	2.3	13
216	Energizing the plasmalemma of marine photosynthetic organisms: the role of primary active transport. Journal of the Marine Biological Association of the United Kingdom, 2020, 100, 333-346.	0.8	13

#	Article	IF	CITATIONS
217	The roles of the <i>Chantransia </i> phase of <i>Lemanea </i> (Lemaneaceae, Batrachospermales,) Tj ETQq1 1 0.784	314 rgBT 0.3	/Overlock 10
218	The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate <i>Protoceratium reticulatum</i> to elevated CO ₂ . Journal of Phycology, 2017, 53, 298-307.	2.3	12
219	The lower limit of photon fluence rate for phototrophic growth: the significance of 'slippage' reactions. Plant, Cell and Environment, 1982, 5, 117-124.	5.7	12
220	Significance of epidermal fusion and intercalary growth for angiosperm evolution. Trends in Plant Science, 2001, 6, 111-113.	8.8	11
221	UNDERSTANDING MEMBRANE FUNCTION. Journal of Phycology, 2001, 37, 960-967.	2.3	11
222	Response to Comment on "The Evolution of Modern Eukaryotic Phytoplankton". Science, 2004, 306, 2191c-2191c.	12.6	11
223	Algal Biogeography: Metagenomics Shows Distribution of a Picoplanktonic Pelagophyte. Current Biology, 2012, 22, R682-R683.	3.9	11
224	Energy cost of intracellular metal and metalloid detoxification in wild-type eukaryotic phytoplankton. Metallomics, 2016, 8, 1097-1109.	2.4	11
225	In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited. Journal of Experimental Botany, 2017, 68, 3829-3839.	4.8	11
226	Carbonate Disequilibrium in the External Boundary Layer of Freshwater Chrysophytes: Implications for Contaminant Uptake. Environmental Science & Envir	10.0	11
227	Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. Fungal Ecology, 2019, 39, 380-387.	1.6	11
228	A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry. Geobiology, 2018, 16, 498-506.	2.4	10
229	Determinants, and implications, of the shape and size of thylakoids and cristae. Journal of Plant Physiology, 2021, 257, 153342.	3.5	10
230	The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. New Phytologist, 2021, 230, 601-611.	7.3	10
231	Long Distance Transport of Calcium. , 1986, , 241-250.		10
232	Altritol synthesis by Notheia anomala. Phytochemistry, 2001, 58, 389-394.	2.9	9
233	Reply to Nakov et al.: Model choice requires biological insight when studying the ancestral habitat of photosynthetic eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10608-E10609.	7.1	9
234	How can large-celled diatoms rapidly modulate sinking rates episodically?. Journal of Experimental Botany, 2020, 71, 3386-3389.	4.8	9

#	Article	IF	Citations
235	Carbon isotope ratios of photolithotrophs from allt meall nan damh, a burn at ardeonaig, Perthshire, and their ecophysiological significance. Botanical Journal of Scotland, 2000, 52, 1-15.	0.3	8
236	An aquatic perspective on the concepts of Ingestad relating plant nutrition to plant growth. Physiologia Plantarum, 2001, 113, 301-307.	5.2	8
237	Grasses. Current Biology, 2010, 20, R837-R839.	3.9	8
238	Acquisition of Inorganic Carbon byÂMicroalgae and Cyanobacteria. , 2020, , 151-168.		8
239	Genome and cell size variation across algal taxa. Perspectives in Phycology, 2019, 6, 59-80.	1.9	8
240	Putting the fight in bryophytes. New Phytologist, 2002, 156, 321-323.	7.3	7
241	The potential effect of low cell osmolarity on cell function through decreased concentration of enzyme substrates. Journal of Experimental Botany, 2018, 69, 4667-4673.	4.8	7
242	Structural and Biochemical Features of Carbon Acquisition in Algae. Advances in Photosynthesis and Respiration, 2020, , 141-160.	1.0	7
243	Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. Advances in Photosynthesis and Respiration, 2020, , 161-178.	1.0	7
244	\hat{l} 13C and \hat{l} 15N in tissue of coral polyps and epilithic algae inhabiting damaged coral colonies under the influence of different light intensities. Aquatic Ecology, 2010, 44, 13-21.	1.5	6
245	Brown Dwarfs and Black Smokers: The Potential for Photosynthesis Using Radiation from Low-Temperature Black Bodies. Cellular Origin and Life in Extreme Habitats, 2013, , 267-284.	0.3	6
246	Evolution of Phytoplankton in Relation to Their Physiological Traits. Journal of Marine Science and Engineering, 2022, 10, 194.	2.6	6
247	Chemistry of the early oceans. , 2003, , 55-64.		5
248	Chlorophyll fluorescence and ecophysiology: seeing red?. New Phytologist, 2006, 169, 449-451.	7.3	4
249	Horsetails get the wind up. New Phytologist, 2009, 184, 6-9.	7. 3	4
250	Origin of the roles of potassium in biology. BioEssays, 2021, 43, 2000302.	2.5	4
251	Nucleic acid requirement of plants from low phosphorus habitats. A Commentary on: Foliar nutrient-allocation patterns in <i>Banksia attenuata </i> banksia sessilis bdiffering in growth rate and adaptation to low-phosphorus habitats. Annals of Botany, 2021, 128, iv-vi.	2.9	4
252	Optimizing Carbon-Nitrogen Budgets: Perspectives for Crop Improvement. Advances in Photosynthesis and Respiration, 2002, , 265-274.	1.0	4

#	Article	IF	Citations
253	Cell size has gene expression and biophysical consequences for cellular function. Perspectives in Phycology, 2019, 6, 81-94.	1.9	4
254	Algal Photosynthesis and Physiology. , 2016, , 1-19.		3
255	Symbiosis Involving Photosynthetic Organisms. , 2017, , 3-41.		3
256	Carbon Dioxide Fixation by Dunaliella spp. and the Possible Use of this Genus in Carbon Dioxide Mitigation and Waste Reduction. , 2009, , 359-384.		3
257	DAVID L. KIRK. Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. Developmental and Cell Biology Series, editors J. D. L. Bard, P. W. Barlow, P. B. Green and D. L. Kirk. Cambridge University Press, Cambridge, 1998, xvi+381 pp European Journal of Phycology, 1998, 33, 275-280.	2.0	2
258	Trees. Current Biology, 2007, 17, R303-R304.	3.9	2
259	How long have photosynthetic organisms been aggregating soils?. New Phytologist, 2018, 219, 1139-1141.	7.3	2
260	Effect of reduced irradiance on 13C uptake, gene expression and protein activity of the seagrass Zostera muelleri. Marine Environmental Research, 2019, 149, 80-89.	2.5	2
261	Energy Sources for, and Detectability of, Life on Extrasolar Planets. Cellular Origin and Life in Extreme Habitats, 2012, , 835-857.	0.3	2
262	Marine macroalgae are an overlooked sink of silicon in coastal systems. New Phytologist, 2022, 233, 2330-2336.	7.3	2
263	Physiology and biochemistry of pteridophytes. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1985, 86, 37-44.	0.2	1
264	Building botany in Cambridge. New Phytologist, 2004, 162, 7-8.	7.3	1
265	Swansong Biospheres: The biosignatures of inhabited earth-like planets nearing the end of their habitable lifetimes. Proceedings of the International Astronomical Union, 2013, 8, 378-379.	0.0	1
266	How Have Genome Studies Improved Our Understanding of Organelle Evolution and Metabolism in Red Algae?. Cellular Origin and Life in Extreme Habitats, 2010, , 275-290.	0.3	1
267	Opportunities for, and limitations on, the functioning of very small cells, illustrated by the Chlorophyta and charophycean Streptophyta. Perspectives in Phycology, 2018, 5, 1-12.	1.9	1
268	Phytoplankton Growth and Nutrients. , 2021, , .		1
269	A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in <i>Synechococcus</i>). Journal of Experimental Botany, 2022, 73, 5596-5611.	4.8	1
270	M. A. HEEMINGA AND C. M. DUARTE. Seagrass Ecology. Cambridge University Press, Cambridge, 2000, xi+298 pp., £52.50 European Journal of Phycology, 2001, 36, 281-283.	2.0	0

#	Article	IF	CITATIONS
271	Climate: Baselines for the Biological Effects of Environmental Change. Current Biology, 2011, 21, R190-R192.	3.9	О
272	Compartmentation of defensive compound synthesis in a red alga. Journal of Phycology, 2015, 51, 222-224.	2.3	0
273	Harry Smith, FRS: co-founding editor and first Chief Editor ofPlant, Cell & Environment. Plant, Cell and Environment, 2015, 38, 1453-1454.	5.7	O
274	Protein assemblages and tight curves in the plasma membranes of photosynthetic eukaryotes. Journal of Plant Physiology, 2021, 256, 153330.	3.5	0
275	Movement of Aquatic Oxygenic Photosynthetic Organisms. Progress in Botany Fortschritte Der Botanik, 2021, , .	0.3	0