List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731097/publications.pdf Version: 2024-02-01

Ινννέ Ε Μλομλτ

#	Article	IF	CITATIONS
1	Lessons from the functional characterization of lncRNAs: introduction to mammalian genome special issue. Mammalian Genome, 2022, , .	2.2	1
2	NCBP3: A Multifaceted Adaptive Regulator of Gene Expression. Trends in Biochemical Sciences, 2021, 46, 87-96.	7.5	7
3	Loss of the fragile X syndrome protein FMRP results in misregulation of nonsense-mediated mRNA decay. Nature Cell Biology, 2021, 23, 40-48.	10.3	23
4	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
5	NMD abnormalities during brain development in the Fmr1-knockout mouse model of fragile X syndrome. Genome Biology, 2021, 22, 317.	8.8	9
6	Viral subversion of nonsense-mediated mRNA decay. Rna, 2020, 26, 1509-1518.	3.5	24
7	The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing. Genes and Development, 2020, 34, 1113-1127.	5.9	41
8	3′READS + RIP defines differential Staufen1 binding to alternative 3′UTR isoforms and reveals structures and sequence motifs influencing binding and polysome association. Rna, 2020, 26, 1621-1636.	3.5	8
9	Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190344.	4.0	18
10	Evaluating the susceptibility of AGO2-loaded microRNAs to degradation by nucleases in vitro. Methods, 2019, 152, 18-22.	3.8	1
11	Cellular RNA surveillance in health and disease. Science, 2019, 366, 822-827.	12.6	95
12	UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. Rna, 2019, 25, 407-422.	3.5	152
13	Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nature Reviews Molecular Cell Biology, 2019, 20, 406-420.	37.0	501
14	Defining nonsense-mediated mRNA decay intermediates in human cells. Methods, 2019, 155, 68-76.	3.8	5
15	Transcriptional Coactivator PGC-1α Binding to Newly Synthesized RNA via CBP80: A Nexus for Co- and Posttranscriptional Gene Regulation. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 47-54.	1.1	4
16	Transcriptional coactivator PGC-1α contains a novel CBP80-binding motif that orchestrates efficient target gene expression. Genes and Development, 2018, 32, 555-567.	5.9	18
17	Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 968-973.	7.1	37
18	Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chemical Reviews, 2018, 118, 4339-4364.	47.7	50

#	Article	IF	CITATIONS
19	Molecular autopsy provides evidence for widespread ribosome-phased mRNA fragmentation. Nature Structural and Molecular Biology, 2018, 25, 299-301.	8.2	3
20	Identifying Cellular Nonsense-Mediated mRNA Decay (NMD) Targets: Immunoprecipitation of Phosphorylated UPF1 Followed by RNA Sequencing (p-UPF1 RIPâ^'Seq). Methods in Molecular Biology, 2018, 1720, 175-186.	0.9	10
21	Nonsense-mediated mRNA Decay and Cancer. Current Opinion in Genetics and Development, 2018, 48, 44-50.	3.3	120
22	NMD-degradome sequencing reveals ribosome-bound intermediates with 3′-end non-templated nucleotides. Nature Structural and Molecular Biology, 2018, 25, 940-950.	8.2	32
23	Nonsenseâ€mediated mRNA decay and human disease: Genome guardian and executor. FASEB Journal, 2018, 32, 99.1.	0.5	0
24	Tudor-SN–mediated endonucleolytic decay of human cell microRNAs promotes G ₁ /S phase transition. Science, 2017, 356, 859-862.	12.6	77
25	UPF1 helicase promotes TSN-mediated miRNA decay. Genes and Development, 2017, 31, 1483-1493.	5.9	34
26	Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nature Structural and Molecular Biology, 2017, 24, 496-498.	8.2	7
27	Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine. Cell, 2016, 165, 1319-1322.	28.9	243
28	Nonsense-mediated mRNA decay in humans at a glance. Journal of Cell Science, 2016, 129, 461-7.	2.0	272
29	Retrotransposons as regulators of gene expression. Science, 2016, 351, aac7247.	12.6	321
30	A TRICK'n way to see the pioneer round of translation. Science, 2015, 347, 1316-1317.	12.6	7
31	Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nature Communications, 2015, 6, 6632.	12.8	67
32	CARMing down the SINEs of anarchy: two paths to freedom from paraspeckle detention. Genes and Development, 2015, 29, 687-689.	5.9	10
33	The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells. Molecules and Cells, 2014, 37, 1-8.	2.6	55
34	Dodging two bullets with one dsRNA-binding protein. Cell Cycle, 2014, 13, 345-346.	2.6	4
35	Defective secretory-protein mRNAs take the RAPP. Trends in Biochemical Sciences, 2014, 39, 154-156.	7.5	2
36	A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes and Development, 2014, 28, 1900-1916.	5.9	148

#	Article	IF	CITATIONS
37	Mobile DNA: an evolving field. Mobile DNA, 2014, 5, 16.	3.6	Ο
38	Staufenâ€mediated <scp>mRNA</scp> decay. Wiley Interdisciplinary Reviews RNA, 2013, 4, 423-435.	6.4	175
39	Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annual Review of Genetics, 2013, 47, 139-165.	7.6	369
40	STAU1 binding 3′ UTR IR <i>Alu</i> s complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes and Development, 2013, 27, 1495-1510.	5.9	109
41	mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nature Structural and Molecular Biology, 2013, 20, 1214-1220.	8.2	58
42	Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 405-412.	7.1	71
43	Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes and Development, 2013, 27, 541-551.	5.9	116
44	Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nature Structural and Molecular Biology, 2013, 20, 515-524.	8.2	51
45	Control of myogenesis by rodent SINE-containing IncRNAs. Genes and Development, 2013, 27, 793-804.	5.9	109
46	Rules that govern UPF1 binding to mRNA 3′ UTRs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3357-3362.	7.1	110
47	Biochemical analysis of long non-coding RNA-containing ribonucleoprotein complexes. Methods, 2012, 58, 88-93.	3.8	36
48	Regulation of cytoplasmic mRNA decay. Nature Reviews Genetics, 2012, 13, 246-259.	16.3	542
49	mRNA decay in mammals. FASEB Journal, 2012, 26, 353.1.	0.5	0
50	Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Current Opinion in Genetics and Development, 2011, 21, 422-430.	3.3	125
51	UPF1 Learns to Relax and Unwind. Molecular Cell, 2011, 41, 621-623.	9.7	8
52	lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470, 284-288.	27.8	1,122
53	"Aluâ€strious long ncRNAs and their roles in shortening mRNA half-lives. Cell Cycle, 2011, 10, 1882-1883.	2.6	27
54	A Yeast Model of FUS/TLS-Dependent Cytotoxicity. PLoS Biology, 2011, 9, e1001052.	5.6	191

#	Article	IF	CITATIONS
55	UPF1 Association with the Cap-Binding Protein, CBP80, Promotes Nonsense-Mediated mRNA Decay at Two Distinct Steps. Molecular Cell, 2010, 39, 396-409.	9.7	106
56	The Pioneer Round of Translation: Features and Functions. Cell, 2010, 142, 368-374.	28.9	192
57	SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes and Development, 2009, 23, 54-66.	5.9	160
58	Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β. Genes and Development, 2009, 23, 2537-2550.	5.9	85
59	Re-capping the message. Trends in Biochemical Sciences, 2009, 34, 435-442.	7.5	87
60	Gene expression networks: competing mRNA decay pathways in mammalian cells. Biochemical Society Transactions, 2009, 37, 1287-1292.	3.4	36
61	Telomeric RNAs as a novel player in telomeric integrity. F1000 Biology Reports, 2009, 1, 90.	4.0	4
62	NMD resulting from encephalomyocarditis virus IRESâ€directed translation initiation seems to be restricted to CBP80/20â€bound mRNA. EMBO Reports, 2008, 9, 446-451.	4.5	19
63	The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nature Reviews Genetics, 2008, 9, 699-712.	16.3	261
64	Efficiency of the Pioneer Round of Translation Affects the Cellular Site of Nonsense-Mediated mRNA Decay. Molecular Cell, 2008, 29, 255-262.	9.7	66
65	Upf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay. Cell, 2008, 133, 314-327.	28.9	251
66	Regulation of Multiple Core Spliceosomal Proteins by Alternative Splicing-Coupled Nonsense-Mediated mRNA Decay. Molecular and Cellular Biology, 2008, 28, 4320-4330.	2.3	183
67	Studying Nonsense-Mediated mRNA Decay in Mammalian Cells. Methods in Enzymology, 2008, 449, 177-201.	1.0	14
68	Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes and Development, 2007, 21, 1833-3856.	5.9	501
69	Staufen1 regulates diverse classes of mammalian transcripts. EMBO Journal, 2007, 26, 2670-2681.	7.8	174
70	Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA. Nature Structural and Molecular Biology, 2007, 14, 974-979.	8.2	53
71	Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends in Molecular Medicine, 2006, 12, 306-316.	6.7	211
72	Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes and Development, 2006, 20, 153-158.	5.9	192

#	Article	IF	CITATIONS
73	Evidence that Poly(A) Binding Protein C1 Binds Nuclear Pre-mRNA Poly(A) Tails. Molecular and Cellular Biology, 2006, 26, 3085-3097.	2.3	92
74	CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nature Structural and Molecular Biology, 2005, 12, 893-901.	8.2	130
75	Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Current Opinion in Cell Biology, 2005, 17, 309-315.	5.4	358
76	Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4258-4263.	7.1	47
77	Nonsense-mediated mRNA decay in mammals. Journal of Cell Science, 2005, 118, 1773-1776.	2.0	248
78	Mammalian Staufen1 Recruits Upf1 to Specific mRNA 3′UTRs so as to Elicit mRNA Decay. Cell, 2005, 120, 195-208.	28.9	438
79	The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes and Development, 2004, 18, 745-754.	5.9	121
80	Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nature Reviews Molecular Cell Biology, 2004, 5, 89-99.	37.0	1,070
81	elF4G is required for the pioneer round of translation in mammalian cells. Nature Structural and Molecular Biology, 2004, 11, 992-1000.	8.2	84
82	An enemy within: fly reconnaissance deploys an endonuclease to destroy nonsense-containing mRNA. Trends in Cell Biology, 2004, 14, 594-597.	7.9	7
83	The mRNA Surveillance Protein hSMG-1 Functions in Genotoxic Stress Response Pathways in Mammalian Cells. Molecular Cell, 2004, 14, 585-598.	9.7	202
84	Nonsense-Mediated mRNA Decay in Mammalian Cells Involves Decapping, Deadenylating, and Exonucleolytic Activities. Molecular Cell, 2003, 12, 675-687.	9.7	322
85	Characterization of human Smg5/7a: A protein with similarities to <i>Caenorhabditis elegans</i> SMG5 and SMG7 that functions in the dephosphorylation of Upf1. Rna, 2003, 9, 77-87.	3.5	144
86	NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes and Development, 2002, 16, 1743-1753.	5.9	53
87	MOLECULAR BIOLOGY: Skiing Toward Nonstop mRNA Decay. Science, 2002, 295, 2221-2222.	12.6	38
88	Â-Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12741-12746.	7.1	53
89	Nonsense-mediated mRNA decay. Current Biology, 2002, 12, R196-R197.	3.9	107
90	The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO Journal, 2002, 21, 3536-3545.	7.8	228

#	Article	IF	CITATIONS
91	Quality Control of mRNA Function. Cell, 2001, 104, 173-176.	28.9	301
92	Evidence for a Pioneer Round of mRNA Translation. Cell, 2001, 106, 607-617.	28.9	502
93	Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. Rna, 2001, 7, 445-456.	3.5	100
94	Evidence that selenium deficiency results in the cytoplasmic decay of GPx1 mRNA dependent on preâ€mRNA splicing proteins bound to the mRNA exonâ€exon junction. BioFactors, 2001, 14, 37-42.	5.4	25
95	Identification and Characterization of Human Orthologues to Saccharomyces cerevisiae Upf2 Protein and Upf3 Protein (Caenorhabditis elegans SMG-4). Molecular and Cellular Biology, 2001, 21, 209-223.	2.3	226
96	Cloning of a Novel Phosphatidylinositol Kinase-related Kinase. Journal of Biological Chemistry, 2001, 276, 22709-22714.	3.4	138
97	Evidence that phosphorylation of human Upf1 protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. Rna, 2001, 7, 5-15.	3.5	120
98	mRNA surveillance in mammalian cells: The relationship between introns and translation termination. Rna, 2000, 6, 1-8.	3.5	43
99	A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends in Biochemical Sciences, 1998, 23, 198-199.	7.5	999
100	At Least One Intron Is Required for the Nonsense-Mediated Decay of Triosephosphate Isomerase mRNA: a Possible Link between Nuclear Splicing and Cytoplasmic Translation. Molecular and Cellular Biology, 1998, 18, 5272-5283.	2.3	255
101	Selenium Deficiency Reduces the Abundance of mRNA for Se-Dependent Glutathione Peroxidase 1 by a UGA-Dependent Mechanism Likely To Be Nonsense Codon-Mediated Decay of Cytoplasmic mRNA. Molecular and Cellular Biology, 1998, 18, 2932-2939.	2.3	207
102	Intron function in the nonsense-mediated decay of β-globin mRNA: Indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. Rna, 1998, 4, 801-815.	3.5	279
103	A β°-thalassemic β-globin RNA that is labile in bone marrow cells is relatively stable in HeLa cells. Nucleic Acids Research, 1985, 13, 2855-2867.	14.5	28
104	mRNA-deficint βº-thaladssemia results from a single nucleotide deletion. Nucleic Acids Research, 1982, 10, 5421-5427.	14.5	111
105	Unstable β-globin mRNA in mRNA-deficient βO thalassemia. Cell, 1981, 27, 543-553.	28.9	273
106	lac Promoter mutations located downstream from the transcription start site. Journal of Molecular Biology, 1980, 139, 537-549.	4.2	64
107	lac Promoter mutation Pr115 generates a new transcription initiation point. Journal of Molecular Biology, 1980, 139, 551-556.	4.2	20
108	In vitro analysis of the Escherichia coli RNA polymerase interaction with wild-type and mutant lactose promoters. Journal of Molecular Biology, 1978, 125, 467-490.	4.2	127