Lovedeep Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE POTENTIAL OF ROSEMARY AS A FUNCTIONAL INGREDIENT FOR MEAT PRODUCTS- A REVIEW. Food Reviews International, 2023, 39, 2212-2232.	8.4	19
2	3D Printing of Textured Soft Hybrid Meat Analogues. Foods, 2022, 11, 478.	4.3	31
3	Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends in Food Science and Technology, 2022, 122, 275-286.	15.1	32
4	Influence of seed microstructure on the hydration kinetics and oral-gastro-small intestinal starch digestion in vitro of New Zealand pea varieties. Food Hydrocolloids, 2022, 129, 107631.	10.7	2
5	Effects of hydrothermal treatment and low-temperature storage of whole wheat grains on in vitro starch hydrolysis and flour properties. Food Chemistry, 2022, 395, 133516.	8.2	5
6	Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control, 2021, 123, 107678.	5.5	29
7	Shockwave processing of beef brisket in conjunction with sous vide cooking: Effects on protein structural characteristics and muscle microstructure. Food Chemistry, 2021, 343, 128500.	8.2	18
8	Physico-Chemical Characteristics and In Vitro Gastro-Small Intestinal Digestion of New Zealand Ryegrass Proteins. Foods, 2021, 10, 331.	4.3	9
9	Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1221-1249.	11.7	66
10	Effects of Pulsed Electric Field Processing and Sous Vide Cooking on Muscle Structure and In Vitro Protein Digestibility of Beef Brisket. Foods, 2021, 10, 512.	4.3	18
11	Intact, Kibbled, and Cut Wheat Grains: Physicoâ€Chemical, Microstructural Characteristics and Gastroâ€&mall Intestinal Digestion In vitro. Starch/Staerke, 2021, 73, 2000267.	2.1	2
12	Cooking of short, medium and long-grain rice in limited and excess water: Effects on microstructural characteristics and gastro-small intestinal starch digestion in vitro. LWT - Food Science and Technology, 2021, 146, 111379.	5.2	14
13	Endogenous Proteolytic Systems and Meat Tenderness: Influence of Post-Mortem Storage and Processing. Food Science of Animal Resources, 2021, 41, 589-607.	4.1	19
14	Effects of Ultrasound Treatments on Tenderness and In Vitro Protein Digestibility of New Zealand Abalone, Haliotis iris. Foods, 2020, 9, 1122.	4.3	14
15	Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 2020, 318, 126475.	8.2	72
16	Changes in Cathepsin Activity during Low-Temperature Storage and Sous Vide Processing of Beef Brisket. Food Science of Animal Resources, 2020, 40, 415-425.	4.1	27
17	Muscle Proteins. , 2019, , 164-179.		14

18 Sweet potato microstructure, starch digestion, and glycemic index. , 2019, , 243-272.

2

LOVEDEEP KAUR

#	Article	IF	CITATIONS
19	Microstructure of indica and japonica rice influences their starch digestibility: A study using a human digestion simulator. Food Hydrocolloids, 2019, 94, 191-198.	10.7	31
20	Effect of post ooking storage on texture and in vitro starch digestion of Japonica rice. Journal of Food Process Engineering, 2019, 42, e12985.	2.9	16
21	Effect of Pulsed Electric Fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis. LWT - Food Science and Technology, 2019, 103, 253-259.	5.2	48
22	Chemical Modification of Starch. , 2018, , 283-321.		27
23	High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion inÂvitro. Food Hydrocolloids, 2018, 75, 131-137.	10.7	60
24	Tea Antioxidants As Affected by Environmental Factors. , 2018, , 313-331.		0
25	Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility. Meat Science, 2018, 145, 256-265.	5.5	56
26	Thermal inactivation of actinidin as affected by meat matrix. Meat Science, 2018, 145, 238-244.	5.5	7
27	Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave. Food Chemistry, 2017, 226, 171-178.	8.2	51
28	Chemistry, Processing, and Nutritional Attributes of Potatoes—An Introduction. , 2016, , xxiii-xxvi.		1
29	Potato Starch and Its Modification. , 2016, , 195-247.		24
30	Novel Applications of Potatoes. , 2016, , 627-649.		3
31	Microstructure, Starch Digestion, and Glycemic Index of Potatoes. , 2016, , 369-402.		4
32	High pressure processing of meat: effects on ultrastructure and protein digestibility. Food and Function, 2016, 7, 2389-2397.	4.6	60
33	Textural Characteristics of Raw and Cooked Potatoes. , 2016, , 475-501.		5
34	Importance of chemistry, nutrition and technology in rice processing. Food Chemistry, 2016, 191, 1.	8.2	2
35	Impact of structural characteristics on starch digestibility of cooked rice. Food Chemistry, 2016, 191, 91-97.	8.2	103
36	Impact of the degree of cooking on starch digestibility of rice – An in vitro study. Food Chemistry, 2016, 191, 98-104.	8.2	87

LOVEDEEP KAUR

#	Article	IF	CITATIONS
37	Antioxidant Quality of Tea (Camellia sinensis) as Affected by Environmental Factors. , 2014, , 121-129.		10
38	Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries. LWT - Food Science and Technology, 2014, 55, 612-620.	5.2	108
39	Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chemistry, 2014, 152, 546-551.	8.2	53
40	Food Microstructure and Starch Digestion. Advances in Food and Nutrition Research, 2013, 70, 137-179.	3.0	38
41	Influence of Kiwifruit on Protein Digestion. Advances in Food and Nutrition Research, 2013, 68, 149-167.	3.0	18
42	Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chemistry, 2012, 133, 1092-1100.	8.2	88
43	In vitro digestibility of starch in cooked potatoes as affected by guar gum: Microstructural and rheological characteristics. Food Chemistry, 2012, 133, 1206-1213.	8.2	86
44	Importance of chemistry, technology and nutrition in potato processing. Food Chemistry, 2012, 133, 1091.	8.2	13
45	Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes. Food Chemistry, 2011, 129, 1120-1125.	8.2	10
46	Influence of Guar Gum on the In Vitro Starch Digestibility—Rheological and Microstructural Characteristics. Food Biophysics, 2010, 5, 149-160.	3.0	188
47	Actinidin Enhances Protein Digestion in the Small Intestine As Assessed Using an in Vitro Digestion Model. Journal of Agricultural and Food Chemistry, 2010, 58, 5074-5080.	5.2	60
48	Actinidin Enhances Gastric Protein Digestion As Assessed Using an in Vitro Gastric Digestion Model. Journal of Agricultural and Food Chemistry, 2010, 58, 5068-5073.	5.2	74
49	Starch digestibility in food matrix: a review. Trends in Food Science and Technology, 2010, 21, 168-180.	15.1	727
50	Textural and Rheological Characteristics of Raw and Cooked Potatoes. , 2009, , 249-271.		1
51	Characterization of Gum Ghatti (<i>Anogeissus latifolia</i>): A Structural and Rheological Approach. Journal of Food Science, 2009, 74, E328-32.	3.1	50
52	Development and characterization of extruded snacks from New Zealand Taewa (Maori potato) flours. Food Research International, 2009, 42, 666-673.	6.2	28
53	Potato Starch and its Modification. , 2009, , 273-318.		17
54	Starch–cassia gum interactions: A microstructure – Rheology study. Food Chemistry, 2008, 111, 1-10.	8.2	98

Lovedeep Kaur

#	Article	IF	CITATIONS
55	Textural and pasting properties of potatoes (Solanum tuberosum L.) as affected by storage temperature. Journal of the Science of Food and Agriculture, 2007, 87, 520-526.	3.5	26
56	Morphological, thermal and rheological characterization of starch isolated from New Zealand Kamo Kamo (Cucurbita pepo) fruit – A novel source. Carbohydrate Polymers, 2007, 67, 233-244.	10.2	60
57	Physico-chemical, rheological and structural properties of fractionated potato starches. Journal of Food Engineering, 2007, 82, 383-394.	5.2	172
58	Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 2007, 21, 1-22.	10.7	837
59	Starch – A Potential Biomaterial for Biomedical Applications. , 2007, , 83-98.		31
60	Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 2006, 20, 532-542.	10.7	212
61	Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 2006, 86, 1945-1954.	3.5	130
62	Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chemistry, 2005, 89, 253-259.	8.2	200
63	Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 2005, 19, 839-849.	10.7	107
64	Microstructural, cooking and textural characteristics of potato (Solanum tuberosum L) tubers in relation to physicochemical and functional properties of their flours. Journal of the Science of Food and Agriculture, 2005, 85, 1275-1284.	3.5	84
65	Effect of Acetylation on Some Properties of Corn and Potato Starches. Starch/Staerke, 2004, 56, 586-601.	2.1	140
66	Relationships between various physicochemical, thermal and rheological properties of starches separated from different potato cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 714-720.	3.5	32
67	Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. Journal of the Science of Food and Agriculture, 2004, 84, 1241-1252.	3.5	190
68	Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81, 219-231.	8.2	1,350
69	Some properties of potatoes and their starches I. Cooking, textural and rheological properties of potatoes. Food Chemistry, 2002, 79, 177-181.	8.2	87
70	Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches. Food Chemistry, 2002, 79, 183-192.	8.2	190