Isabelle Gross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesalazine initiates an anti-oncogenic β-catenin / MUCDHL negative feed-back loop in colon cancer cells by cell-specific mechanisms. Biomedicine and Pharmacotherapy, 2022, 146, 112543.	5.6	3
2	CDX2 controls genes involved in the metabolism of 5-fluorouracil and is associated with reduced efficacy of chemotherapy in colorectal cancer. Biomedicine and Pharmacotherapy, 2022, 147, 112630.	5.6	7
3	The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene, 2021, 40, 522-535.	5.9	7
4	CDX2 regulates ACE expression in blood development and leukemia cells. Blood Advances, 2021, 5, 2012-2016.	5.2	1
5	CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. Journal of Cell Science, 2021, 134, .	2.0	4
6	Bypassing the Resistance Mechanisms of the Tumor Ecosystem by Targeting the Endoplasmic Reticulum Stress Pathway Using Ruthenium- and Osmium-Based Organometallic Compounds: An Exciting Long-Term Collaboration with Dr. Michel Pfeffer. Molecules, 2021, 26, 5386.	3.8	8
7	Anticancer activity of ruthenium and osmium cyclometalated compounds: identification of ABCB1 and EGFR as resistance mechanisms. Inorganic Chemistry Frontiers, 2020, 7, 678-688.	6.0	34
8	Prognostic factors of hemorrhagic complications after oxaliplatin-based hyperthermic intraperitoneal chemotherapy: Toward routine preoperative dosage of Von Willebrand factor?. European Journal of Surgical Oncology, 2017, 43, 1095-1101.	1.0	10
9	Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death and Differentiation, 2017, 24, 2173-2186.	11.2	13
10	The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Letters, 2017, 386, 57-64.	7.2	28
11	Distinct mechanisms for opposite functions of homeoproteins Cdx2 and HoxB7 in double-strand break DNA repair in colon cancer cells. Cancer Letters, 2016, 374, 208-215.	7.2	10
12	Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63. ELife, 2016, 5, .	6.0	25
13	Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World Journal of Gastroenterology, 2015, 21, 1436.	3.3	17
14	Transcriptional Regulation of the Intestinal Nuclear Bile Acid Farnesoid X Receptor (FXR) by the caudal-related Homeobox 2 (CDX2). Journal of Biological Chemistry, 2014, 289, 28421-28432.	3.4	12
15	Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant. Biochimie, 2013, 95, 995-1001.	2.6	23
16	Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells. Nucleic Acids Research, 2012, 40, 3456-3469.	14.5	22
17	Cdx2 Controls Expression of the Protocadherin Mucdhl, an Inhibitor of Growth and β-Catenin Activity in Colon Cancer Cells. Gastroenterology, 2012, 142, 875-885.e3.	1.3	45
18	Complex Regulation of p73 Isoforms after Alteration of Amyloid Precursor Polypeptide (APP) Function and DNA Damage in Neurons. Journal of Biological Chemistry, 2011, 286, 43013-43025.	3.4	27

ISABELLE GROSS

#	Article	IF	CITATIONS
19	<i>CDX2</i> in Congenital Gut Gastric-Type Heteroplasia and Intestinal-Type Meckel Diverticula. Pediatrics, 2010, 126, e723-e727.	2.1	8
20	A Ruthenium-Containing Organometallic Compound Reduces Tumor Growth through Induction of the Endoplasmic Reticulum Stress Gene <i>CHOP</i> . Cancer Research, 2009, 69, 5458-5466.	0.9	201
21	The intestine-specific homeobox gene Cdx2 decreases mobility and antagonizes dissemination of colon cancer cells. Oncogene, 2008, 27, 107-115.	5.9	90
22	Multiple Regulatory Regions Control the Complex Expression Pattern of the Mouse Cdx2 Homeobox Gene. Gastroenterology, 2008, 135, 1238-1247.e3.	1.3	71
23	The Microenvironment Controls CDX2 Homeobox Gene Expression in Colorectal Cancer Cells. American Journal of Pathology, 2007, 170, 733-744.	3.8	25
24	Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut, 2007, 56, 1688-1695.	12.1	38
25	Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death and Differentiation, 2007, 14, 1802-1812.	11.2	65
26	Multiple neurotoxic stresses converge on MDMX proteolysis to cause neuronal apoptosis. Cell Death and Differentiation, 2007, 14, 2047-2057.	11.2	35
27	Effect of laminin-1 on intestinal cell differentiation involves inhibition of nuclear nucleolin. Journal of Cellular Physiology, 2006, 206, 545-555.	4.1	46
28	Functional interaction between the homeoprotein CDX1 and the transcriptional machinery containing the TATA-binding protein. Nucleic Acids Research, 2006, 35, 175-185.	14.5	8
29	Phosphorylation of the homeotic tumor suppressor Cdx2 mediates its ubiquitin-dependent proteasome degradation. Oncogene, 2005, 24, 7955-7963.	5.9	39
30	Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells. Experimental Cell Research, 2005, 303, 494-503.	2.6	49
31	Sprouty1 Is a Critical Regulator of GDNF/RET-Mediated Kidney Induction. Developmental Cell, 2005, 8, 229-239.	7.0	327
32	Tyrosine Phosphorylation of Sprouty Proteins Regulates Their Ability to Inhibit Growth Factor Signaling: A Dual Feedback Loop. Molecular Biology of the Cell, 2004, 15, 2176-2188.	2.1	118
33	The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development. Journal of Biological Chemistry, 2003, 278, 41420-41430.	3.4	72
34	Cyclin-dependent Kinases Phosphorylate p73 at Threonine 86 in a Cell Cycle-dependent Manner and Negatively Regulate p73. Journal of Biological Chemistry, 2003, 278, 27421-27431.	3.4	55
35	Mammalian Sprouty Proteins Inhibit Cell Growth and Differentiation by Preventing Ras Activation. Journal of Biological Chemistry, 2001, 276, 46460-46468.	3.4	225
36	E-cadherin Is a WT1 Target Gene. Journal of Biological Chemistry, 2000, 275, 10943-10953.	3.4	112

ISABELLE GROSS

#	Article	IF	CITATIONS
37	Dorsal-B, a splice variant of the Drosophila factor Dorsal, is a novel Rel/NF-κB transcriptional activator. Gene, 1999, 228, 233-242.	2.2	20
38	Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae EMBO Journal, 1996, 15, 4691-4701.	7.8	99
39	Drosophila Immunity: A Comparative Analysis of the Rel Proteins Dorsal and Dif in the Induction of the Genes Encoding Diptericin and Cecropin. Nucleic Acids Research, 1996, 24, 1238-1245.	14.5	69
40	Drosophilaimmunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter. Nucleic Acids Research, 1995, 23, 1140-1145.	14.5	48