Monia Ginevrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727951/publications.pdf

Version: 2024-02-01

			687363	552781
38		853	13	26
papers		citations	h-index	g-index
	. '			
38		38	38	1922
all docs		docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
2	Phenotypic spectrum of alpha-synuclein mutations: New insights from patients and cellular models. Parkinsonism and Related Disorders, 2016, 22, S16-S20.	2.2	98
3	The <scp>C</scp> ontursi <scp>F</scp> amily 20 <scp>Y</scp> ears <scp>L</scp> ater: <scp>I</scp> ntrafamilial <scp>P</scp> henotypic <scp>V</scp> ariability of the <scp><i>SNCA</i></scp> p. <scp>A</scp> 53T <scp>M</scp> utation. Movement Disorders, 2016, 31, 257-258.	3.9	86
4	<scp><i>GBA</i>â€Related</scp> Parkinson's Disease: Dissection of Genotype–Phenotype Correlates in a Large Italian Cohort. Movement Disorders, 2020, 35, 2106-2111.	3.9	83
5	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	9.0	66
6	Impulsive-compulsive behaviors in <i>parkin</i> -associated Parkinson disease. Neurology, 2016, 87, 1436-1441.	1.1	61
7	Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101, 552-563.	6.2	45
8	Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti–Boltshauser syndrome). European Journal of Human Genetics, 2016, 24, 1262-1267.	2.8	43
9	Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson's disease. Neurobiology of Aging, 2018, 64, 159.e5-159.e8.	3.1	30
10	Age and sex prevalence estimate of Joubert syndrome in Italy. Neurology, 2020, 94, e797-e801.	1.1	26
11	Heterozygous <i>KIF1A</i> variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. Journal of Medical Genetics, 2021, 58, 475-483.	3. 2	21
12	Between SCA5 and SCAR14: delineation of the SPTBN2 p.R480W-associated phenotype. European Journal of Human Genetics, 2018, 26, 928-929.	2.8	17
13	A novel IRF2BPL truncating variant is associated with endolysosomal storage. Molecular Biology Reports, 2020, 47, 711-714.	2.3	16
14	Progressive Supranuclear Palsy–Like Phenotype in a <i>GBA</i> E326K Mutation Carrier. Movement Disorders Clinical Practice, 2017, 4, 444-446.	1.5	14
15	DYT2 screening in early-onset isolated dystonia. European Journal of Paediatric Neurology, 2017, 21, 269-271.	1.6	13
16	Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clinical Neurophysiology, 2020, 131, 2691-2699.	1.5	13
17	Refining the mutational spectrum and gene–phenotype correlates in pontocerebellar hypoplasia: results of a multicentric study. Journal of Medical Genetics, 2022, 59, 399-409.	3.2	13
18	BDNF and LTP-/LTD-like plasticity of the primary motor cortex in Gilles de la Tourette syndrome. Experimental Brain Research, 2017, 235, 841-850.	1.5	12

#	Article	IF	CITATIONS
19	Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain, 2019, 142, 2965-2978.	7.6	12
20	Brain Connectivity Changes in Autosomal Recessive Parkinson Disease: A Model for the Sporadic Form. PLoS ONE, 2016, 11, e0163980.	2.5	10
21	Very mild features of dysequilibrium syndrome associated with a novel VLDLR missense mutation. Neurogenetics, 2016, 17, 191-195.	1.4	9
22	Clinical variability at the mild end of <i>BRAT1</i> â€related spectrum: Evidence from two families with genotypeâ€"phenotype discordance. Human Mutation, 2022, 43, 67-73.	2.5	9
23	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi003-A from a patient affected by an autosomal recessive form of Long QT Syndrome type 1. Stem Cell Research, 2018, 29, 170-173.	0.7	6
24	<scp><i>APP</i></scp> â€Related Corticobasal Syndrome: Expanding the List of Corticobasal Degeneration Look Alikes. Movement Disorders Clinical Practice, 2020, 7, 849-851.	1.5	6
25	Clinical and Molecular Characterization of a Novel Progranulin Deletion Associated with Different Phenotypes. Journal of Alzheimer's Disease, 2020, 76, 341-347.	2.6	5
26	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi006-A from a patient affected by an autosomal recessive form of long QT syndrome type 1. Stem Cell Research, 2020, 42, 101658.	0.7	4
27	A ZFHX4 mutation associated with a recognizable neuropsychological and facial phenotype. European Journal of Medical Genetics, 2021, 64, 104321.	1.3	4
28	The multiple faces of TOR1A: different inheritance, different phenotype. Brain, 2017, 140, 2764-2767.	7.6	3
29	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi002-A from a patient affected by the Jervell and Lange-Nielsen syndrome and carrier of two compound heterozygous mutations on the KCNQ1 gene. Stem Cell Research, 2018, 29, 157-161.	0.7	3
30	Generation of two human induced pluripotent stem cell (hiPSC) lines from a long QT syndrome South African founder population. Stem Cell Research, 2019, 39, 101510.	0.7	3
31	Absence of FGFR3–TACC3 rearrangement in hematological malignancies with numerical chromosomal alteration. Hematology/ Oncology and Stem Cell Therapy, 2021, 14, 163-168.	0.9	3
32	Posterior Cortical Atrophy phenotype in a GBA N370S mutation carrier: a case report. BMC Neurology, 2021, 21, 17.	1.8	3
33	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi007-A from a Long QT Syndrome type 1 patient carrier of two common variants in the NOS1AP gene. Stem Cell Research, 2019, 36, 101416.	0.7	2
34	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi004-A from a carrier of the KCNQ1-R594Q mutation. Stem Cell Research, 2019, 37, 101431.	0.7	2
35	Genetic characterization of a cohort with familial parkinsonism and cognitive-behavioral syndrome: A Next Generation Sequencing study. Parkinsonism and Related Disorders, 2021, 84, 82-90.	2.2	2
36	Genetic Paradoxes in an Italian Family with <i><scp>PARK</scp>2</i> Multiexon Duplication. Movement Disorders Clinical Practice, 2017, 4, 889-892.	1.5	1

#	Article	lF	CITATIONS
37	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi005-A from a patient carrying the KCNQ1-R190W mutation. Stem Cell Research, 2019, 37, 101437.	0.7	1
38	Intrafamilial variability in a polish family harbouring a frameshift THAP1 mutation. Journal of the Neurological Sciences, 2018, 388, 158.	0.6	0