
Makoto Fujimaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727689/publications.pdf Version: 2024-02-01

Μλκότο Ειμιμλεί

#	Article	IF	CITATIONS
1	Toward the development of an optical technique for identifying and imaging white blood cells in whole blood. Japanese Journal of Applied Physics, 2021, 60, 038001.	1.5	0
2	Sensitive Detection of C-Reactive Protein by One-Step Method Based on a Waveguide-Mode Sensor. Sensors, 2020, 20, 3195.	3.8	5
3	Detection of norovirus-like particles with an external force-assisted near-field illumination biosensor. Japanese Journal of Applied Physics, 2019, 58, 071005.	1.5	2
4	Application of a Waveguide-Mode Sensor to Blood Testing for Hepatitis B Virus, Hepatitis C Virus, Human Immunodeficiency Virus and Treponema pallidum Infection. Sensors, 2019, 19, 1729.	3.8	2
5	Sensitive typing of reverse ABO blood groups with a waveguide-mode sensor. Journal of Bioscience and Bioengineering, 2018, 126, 131-137.	2.2	5
6	Real-Time Online Monitoring for Assessing Removal of Bacteria by Reverse Osmosis. Environmental Science and Technology Letters, 2018, 5, 389-393.	8.7	24
7	Selective detection ofEscherichia coliby imaging of the light intensity transmitted through an optical disk. Applied Physics Express, 2018, 11, 037001.	2.4	2
8	Proposal of a chip capable of simultaneous excitation of waveguide-mode resonance and surface plasmon resonance for an electro-assisted near-field fluorescence sensor. Japanese Journal of Applied Physics, 2018, 57, 122002.	1.5	0
9	Fluorescence imaging of <i>Escherichia coli</i> on a rotating optical disk. Japanese Journal of Applied Physics, 2018, 57, 088003.	1.5	2
10	Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria. Japanese Journal of Applied Physics, 2018, 57, 057001.	1.5	4
11	Development of a TiO ₂ /SiO ₂ waveguide-mode chip for an ultraviolet near-field fluorescence sensor. Optics Express, 2018, 26, 6796.	3.4	1
12	Detection of antibodies against hepatitis B virus surface antigen and hepatitis C virus core antigen in plasma with a waveguide-mode sensor. Journal of Bioscience and Bioengineering, 2017, 123, 760-764.	2.2	8
13	Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood. Japanese Journal of Applied Physics, 2017, 56, 037201.	1.5	8
14	Blue-laser scanned imaging system using positioning marks formed on an optical disk substrate. Japanese Journal of Applied Physics, 2017, 56, 058003.	1.5	3
15	Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosensors and Bioelectronics, 2017, 93, 260-266.	10.1	70
16	Dielectrophoresis-assisted SPRF illumination biosensor for selective detection of biological substances. , 2017, , .		0
17	Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor. Optics Express, 2017, 25, 26011.	3.4	4
18	Carbon Nanotubes as Fluorescent Labels for Surface Plasmon Resonance-Assisted Fluoroimmunoassay. Sensors, 2017, 17, 2569.	3.8	8

#	Article	IF	CITATIONS
19	Detection of Extremely Low Concentrations of Biological Substances Using Near-Field Illumination. Scientific Reports, 2016, 6, 39241.	3.3	12
20	Rapid detection of hemagglutination using restrictive microfluidic channels equipped with waveguide-mode sensors. Japanese Journal of Applied Physics, 2016, 55, 027002.	1.5	7
21	A Monitoring Method of Additives in a Copper Sulfate Plating Solution Using a Near-Field Optical Sensor. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 575-580.	0.2	0
22	Optical-disk-based imaging system to be used as an optical microscope. Japanese Journal of Applied Physics, 2016, 55, 078002.	1.5	3
23	Sensor chip design for increasing surface-plasmon-assisted fluorescence enhancement of the V-trench biosensor. Japanese Journal of Applied Physics, 2016, 55, 067001.	1.5	4
24	Microfluidic chips for forward blood typing performed with a multichannel waveguide-mode sensor. Sensing and Bio-Sensing Research, 2016, 7, 121-126.	4.2	20
25	Hemagglutination detection for blood typing based on waveguide-mode sensors. Sensing and Bio-Sensing Research, 2015, 3, 59-64.	4.2	13
26	Parallel-incidence-type waveguide-mode sensor with spectral-readout setup. Optics Express, 2015, 23, 10925.	3.4	11
27	Development of a Plasma Separation System for a Portable Blood Test Device. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 152-157.	0.1	1
28	Detection of influenza viruses with the waveguide mode sensor. Synthesiology, 2015, 8, 97-107.	0.2	0
29	Microfluidic sedimentation system for separation of plasma from whole blood. , 2014, , .		4
30	Generation of Anti-Influenza Aptamers Using the Systematic Evolution of Ligands by Exponential Enrichment for Sensing Applications. Langmuir, 2013, 29, 15107-15115.	3.5	85
31	An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing. Nature Communications, 2013, 4, 2855.	12.8	73
32	Neu5Acα2,6Gal and Neu5Acα2,3Gal receptor specificities on influenza viruses determined by a waveguide-mode sensor. Acta Biomaterialia, 2013, 9, 5080-5087.	8.3	34
33	A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, The, 2013, 138, 2863.	3.5	123
34	Palmtop waveguide-mode sensor: Comparison of sensitivity and subtyping of influenza viruses with SPR, ELISA and Immunochromatography. , 2013, , .		0
35	Design and Fabrication of Biosensing Interface for Waveguide-Mode Sensor. Langmuir, 2013, 29, 13111-13120.	3.5	21
36	Detection and Two-Dimensional Imaging ofEscherichia coliAttached to an Optical Disk. Japanese Journal of Applied Physics, 2013, 52, 108004.	1.5	7

#	Article	IF	CITATIONS
37	Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection. Journal of Applied Physics, 2013, 113, 143103.	2.5	5
38	Observations of Immuno-Gold Conjugates on Influenza Viruses Using Waveguide-Mode Sensors. PLoS ONE, 2013, 8, e69121.	2.5	50
39	Evaluation of Anti-A/Udorn/307/1972 Antibody Specificity to Influenza A/H3N2 Viruses Using an Evanescent-Field Coupled Waveguide-Mode Sensor. PLoS ONE, 2013, 8, e81396.	2.5	43
40	Detection of Influenza Viruses Attached to an Optical Disk. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 145-150.	0.5	9
41	Waveguide-Mode Sensors as Aptasensors. Sensors, 2012, 12, 2136-2151.	3.8	44
42	Surface functionalization chemistries on highly sensitive silica-based sensor chips. Analyst, The, 2012, 137, 3520.	3.5	39
43	A study of the critical factor determining the size of etched latent tracks formed on SiO2 glass by swift-Cl-ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 1-4.	1.4	1
44	Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor. Nanotechnology, 2011, 22, 245503.	2.6	5
45	Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure. Optics Express, 2011, 19, 20205.	3.4	17
46	Signal changes for dye-complexed biomolecular interactions on waveguide-sensor chips. Sensors and Actuators B: Chemical, 2011, 155, 239-244.	7.8	13
47	Size control of nanopores formed on SiO2 glass by swift-heavy-ion irradiation and its application to highly sensitive biomolecular detection. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	2
48	Evaluation of nucleic acid duplex formation on gold over layers in biosensor fabricated using Czochralski-grown single-crystal silicon substrate. Analytical and Bioanalytical Chemistry, 2010, 398, 751-758.	3.7	23
49	Resist-less patterning on SiO2 by combination of X-ray exposure and vapor HF etching. Microsystem Technologies, 2010, 16, 1339-1346.	2.0	2
50	Optimization of silica surface with nanosize holes for immobilization of biomolecules and analysis of their interactions. Analytica Chimica Acta, 2010, 680, 72-78.	5.4	7
51	Detection of colored nanomaterials using evanescent field-based waveguide sensors. Optics Express, 2010, 18, 15732.	3.4	46
52	Detection of influenza viruses by a waveguide-mode sensor. Analytical Methods, 2010, 2, 1880.	2.7	32
53	Monitoring biological interactions using perforated evanescent-field-coupled waveguide-mode nanobiosensors. Nucleic Acids Symposium Series, 2009, 53, 93-94.	0.3	2
54	Optical Fiber Depolarizer Using Birefringence Induced by Proton Implantation. Japanese Journal of Applied Physics, 2009, 48, 032404.	1.5	4

#	Article	IF	CITATIONS
55	Solution Conductivity as a Key Factor for Thin Silica Coating on Colloidal Silver. Japanese Journal of Applied Physics, 2009, 48, 06FE04.	1.5	0
56	Control of Coupling Ratio by Proton Implantation for a Directional Coupler of Planar-Lightwave-Circuit Type. Japanese Journal of Applied Physics, 2009, 48, 102405.	1.5	6
57	Mechanism of elongation of gold or silver nanoparticles in silica by irradiation with swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 941-943.	1.4	15
58	Monitoring surface-assisted biomolecular assembly by means of evanescent-field-coupled waveguide-mode nanobiosensors. Analytical and Bioanalytical Chemistry, 2009, 394, 481-488.	3.7	17
59	Plasmonic activity on gold nanoparticles embedded in nanopores formed in a surface layer of silica glass by swift-heavy-ion irradiation. Nanotechnology, 2009, 20, 475306.	2.6	4
60	Development of high-sensitivity molecular adsorption detection sensors. Synthesiology, 2009, 2, 142-153.	0.2	10
61	Title is missing!. Synthesiology, 2009, 2, 147-158.	0.2	1
62	Reduction in polarization dependent loss of a planar lightwave circuit by ion-implantation-induced birefringence. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 4762-4765.	1.4	4
63	Biomolecular sensors utilizing waveguide modes excited by evanescent fields. Journal of Microscopy, 2008, 229, 320-326.	1.8	16
64	A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society, 2008, 130, 1676-1680.	13.7	1,422
65	Influence of Nanometric Holes on the Sensitivity of a Waveguide-Mode Sensor: Label-Free Nanosensor for the Analysis of RNA Aptamerâ^'Ligand Interactions. Analytical Chemistry, 2008, 80, 6602-6609.	6.5	53
66	Silica-based monolithic sensing plates for waveguide-mode sensors. Optics Express, 2008, 16, 6408.	3.4	54
67	The design of evanescent-field-coupled waveguide-mode sensors. Nanotechnology, 2008, 19, 095503.	2.6	18
68	Fabrication of Inert Silver Nanoparticles with a Thin Silica Coating. Japanese Journal of Applied Physics, 2008, 47, 8641-8643.	1.5	11
69	Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions. Physical Review B, 2008, 78, .	3.2	81
70	Surface Enhanced Raman Scattering of Silver Nanopartcles Formed from Silver Oxide Films with Different Composition Ratios. Japanese Journal of Applied Physics, 2007, 46, 1220-1223.	1.5	2
71	Surface-Enhanced Raman Scattering by Hemi-Ellipsoidal Ag Nanoparticles Generated from Silver-Oxide Thin Films. Japanese Journal of Applied Physics, 2007, 46, L1080-L1082.	1.5	2
72	High sensitivity sensors made of perforated waveguides. Optics Express, 2007, 15, 2592.	3.4	63

5

#	Article	IF	CITATIONS
73	Control of the properties of directional couplers using proton irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 264, 267-271.	1.4	4
74	Birefringence in optical fibers formed by proton implantation. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 490-494.	1.4	11
75	Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors. Microelectronic Engineering, 2007, 84, 1685-1689.	2.4	15
76	Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions. Journal of Applied Physics, 2006, 100, 044308.	2.5	45
77	Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgOx thin films. Journal of Applied Physics, 2006, 100, 074303.	2.5	21
78	Molecular detection in a micro channel using silver-oxide thin film. Microelectronic Engineering, 2006, 83, 1626-1629.	2.4	5
79	Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film. Nanotechnology, 2006, 17, 1717-1721.	2.6	12
80	Photonic crystals of titanium dioxide fabricated by swift heavy ions. Radiation Measurements, 2005, 40, 722-729.	1.4	12
81	High Sensitive Optical Detection of Bio-Chemicals onto a Silicon Oxide Surface Based on Waveguide Mode. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
82	Fabrication of two- and three-dimensional photonic crystals of titania with submicrometer resolution by deep x-ray lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 934.	1.6	25
83	Photonic crystal structures in titanium dioxide (TiO2) and their optimal design. Optics Express, 2005, 13, 1486.	3.4	50
84	Development of a Sub-micron Processing Method with Ion Implantation. IEEJ Transactions on Fundamentals and Materials, 2005, 125, 69-70.	0.2	1
85	Ultraviolet photon-induced absorption bands and paramagnetic centers in Ge and Sn co-doped SiO2 glass. Journal of Non-Crystalline Solids, 2003, 318, 87-94.	3.1	3
86	Three-Dimensional Lithography for Rutile TiO2 Single Crystals using Swift Heavy Ions. Materials Research Society Symposia Proceedings, 2003, 797, 75.	0.1	0
87	Structural change induced inTiO2by swift heavy ions and its application to three-dimensional lithography. Physical Review B, 2003, 68, .	3.2	42
88	Photo-induced refractive index change in hydrogenated amorphous silicon oxynitride. Journal of Applied Physics, 2002, 91, 6350.	2.5	10
89	Visible electroluminescence in hydrogenated amorphous silicon oxynitride. Journal of Applied Physics, 2001, 90, 2216-2220.	2.5	19
90	Origin of photoluminescence around 2.6–2.9 eV in silicon oxynitride. Applied Physics Letters, 2001, 79, 1995-1997.	3.3	34

#	Article	IF	CITATIONS
91	Application of Infrared Attenuated Total Reflection Spectroscopy to In Situ Analysis of Atheromatous Plaques in Aorta. Japanese Journal of Applied Physics, 2000, 39, L490-L492.	1.5	5
92	Photoluminescence Analysis of Plasma-deposited Oxygen-rich Silicon Oxynitride Films. Japanese Journal of Applied Physics, 2000, 39, 6587-6593.	1.5	12
93	Time-resolved photoluminescence study of hydrogenated amorphous silicon nitride. Physical Review B, 2000, 62, 1532-1535.	3.2	26
94	Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings. Journal of Applied Physics, 2000, 88, 5534-5537.	2.5	32
95	Structures and Optical Properties of Defects Correlated with Photo-Induced Refractive Index Changes in Ge-Doped SiO ₂ Glass. Defect and Diffusion Forum, 2000, 177-178, 43-50.	0.4	1
96	Fabrication of long-period optical fiber gratings by use of ion implantation. Optics Letters, 2000, 25, 88.	3.3	86
97	Effect of Ozone Annealing on the Charge Trapping Property of Ta2O5–Si3N4–p-Si Capacitor Grown by Low-pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1999, 38, 6791-6796.	1.5	14
98	Paramagnetic centres induced in Ge-doped glass with UV irradiation. Journal of Physics Condensed Matter, 1999, 11, 2589-2594.	1.8	12
99	Effect of annealing on Ge-doped SiO2 thin films. Journal of Applied Physics, 1999, 86, 5270-5273.	2.5	11
100	Structural changes induced by KrF excimer laser photons inH2-loaded Ge-dopedSiO2glass. Physical Review B, 1999, 60, 4682-4687.	3.2	59
101	Temperature dependence of the lifetime of 4.3-eV photoluminescence in oxygen-deficient amorphousSiO2. Physical Review B, 1999, 59, 1590-1593.	3.2	20
102	Direct deposition of a blanket tungsten layer on SiO2 by preexposure of helium plasma. Journal of Applied Physics, 1999, 85, 8423-8426.	2.5	4
103	Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-dopedSiO2optical-fiber gratings. Physical Review B, 1998, 57, 3920-3926.	3.2	85
104	Energy states of Ge-doped SiO2glass estimated through absorption and photoluminescence. Journal of Applied Physics, 1997, 81, 1042-1046.	2.5	45
105	Excited-state absorption measurement in Ge-doped SiO2 glass. Journal of Applied Physics, 1997, 81, 2913-2915.	2.5	6
106	Laser-power dependence of absorption changes in Ge-dopedSiO2glass induced by a KrF excimer laser. Physical Review B, 1996, 53, 9859-9862.	3.2	26