Marcel WÃ¹/₄thrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727554/publications.pdf

Version: 2024-02-01

68 papers

3,376 citations

147801 31 h-index 56 g-index

72 all docs 72 docs citations

times ranked

72

3173 citing authors

#	Article	IF	Citations
1	Variation in Host Resistance to Blastomyces dermatitidis: Potential Use of Genetic Reference Panels and Advances in Immunophenotyping of Diverse Mouse Strains. MBio, 2022, , e0340021.	4.1	2
2	SLAMF1 Is Dispensable for Vaccine-Induced T Cell Development but Required for Resistance to Fungal Infection. Journal of Immunology, 2022, 208, 1417-1423.	0.8	2
3	Structural basis of Blastomyces Endoglucanase-2 adjuvancy in anti-fungal and -viral immunity. PLoS Pathogens, 2021, 17, e1009324.	4.7	7
4	The Known Unknowns of the Immune Response to Coccidioides. Journal of Fungi (Basel, Switzerland), 2021, 7, 377.	3.5	6
5	Combination Adjuvants Enhance Recombinant Protein Vaccine Protection against Fungal Infection. MBio, 2021, 12, e0201821.	4.1	5
6	Antigen discovery unveils resident memory and migratory cell roles in antifungal resistance. Mucosal Immunology, 2020, 13, 518-529.	6.0	15
7	CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against <i>Coccidioides posadasii</i> Infection. Journal of Immunology, 2020, 204, 3296-3306.	0.8	19
8	Early immune response against Fonsecaea pedrosoi requires Dectin-2-mediated Th17 activity, whereas Th1 response, aided by Treg cells, is crucial for fungal clearance in later stage of experimental chromoblastomycosis. PLoS Neglected Tropical Diseases, 2020, 14, e0008386.	3.0	11
9	Title is missing!. , 2020, 14, e0008386.		0
10	Title is missing!. , 2020, 14, e0008386.		0
11	Title is missing!. , 2020, 14, e0008386.		0
12	Title is missing!. , 2020, 14, e0008386.		0
13	Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathogens, 2019, 15, e1007777.	4.7	48
14	Investigation of Genetic Susceptibility to Blastomycosis Reveals Interleukin-6 as a Potential Susceptibility Locus. MBio, 2019, 10, .	4.1	30
15	Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Scientific Reports, 2019, 9, 6788.	3.3	45
16	Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. Journal of Medical Microbiology, 2019, 68, 1649-1654.	1.8	14
17	O-Mannosylation of Proteins Enables <i>Histoplasma</i> Yeast Survival at Mammalian Body Temperatures. MBio, 2018, 9, .	4.1	8
18	CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis. MBio, 2018, 9, .	4.1	55

#	Article	IF	CITATIONS
19	Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection. Cell Host and Microbe, 2018, 23, 511-522.e5.	11.0	62
20	Dectin-2 Is a C-Type Lectin Receptor that Recognizes <i>Pneumocystis</i> and Participates in Innate Immune Responses. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 232-240.	2.9	27
21	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	6.4	95
22	The Interaction of <i>Pneumocystis</i> with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. Journal of Immunology, 2017, 198, 3515-3525.	0.8	45
23	Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLoS ONE, 2017, 12, e0173866.	2.5	31
24	Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without plasticity towards IFN \hat{I}^3 cells. PLoS Pathogens, 2017, 13, e1006356.	4.7	36
25	Ligation of Dectin-2 with a novel microbial ligand promotes adjuvant activity for vaccination. PLoS Pathogens, 2017, 13, e1006568.	4.7	26
26	The Eng1 \hat{I}^2 -Glucanase Enhances < i > Histoplasma < /i > Virulence by Reducing \hat{I}^2 -Glucan Exposure. MBio, 2016, 7, e01388-15.	4.1	76
27	Transcription Factor KLF2 in Dendritic Cells Downregulates Th2 Programming via the HIF- $1\hat{l}\pm J$ agged2/Notch Axis. MBio, 2016, 7, .	4.1	32
28	Mannose Receptor Is Required for Optimal Induction of Vaccine-Induced T-Helper Type 17 Cells and Resistance to <i>Blastomyces dermatitidis</i> Infection. Journal of Infectious Diseases, 2016, 213, 1762-1766.	4.0	11
29	Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity. Cell Host and Microbe, 2016, 19, 361-374.	11.0	41
30	The C-Type Lectin Receptor MCL Mediates Vaccine-Induced Immunity against Infection with Blastomyces dermatitidis. Infection and Immunity, 2016, 84, 635-642.	2.2	26
31	MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathogens, 2016, 12, e1005787.	4.7	7
32	<i>Fonsecaea pedrosoi</i> i>â€induced Th17â€cell differentiation in mice is fostered by Dectinâ€2 and suppressed by Mincle recognition. European Journal of Immunology, 2015, 45, 2542-2552.	2.9	57
33	The Unappreciated Intracellular Lifestyle of <i>Blastomyces dermatitidis</i> . Journal of Immunology, 2015, 194, 1796-1805.	0.8	34
34	Adaptive Immunity to Fungi. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019612-a019612.	6.2	85
35	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 95-107.	14.3	144
36	Calnexin Induces Expansion of Antigen-Specific CD4+ T Cells that Confer Immunity to Fungal Ascomycetes via Conserved Epitopes. Cell Host and Microbe, 2015, 17, 452-465.	11.0	58

#	Article	IF	CITATIONS
37	Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia. PLoS Pathogens, 2015, 11, e1005161.	4.7	39
38	C-Type Lectin Receptors Differentially Induce Th17 Cells and Vaccine Immunity to the Endemic Mycosis of North America. Journal of Immunology, 2014, 192, 1107-1119.	0.8	88
39	Interleukin-1 Receptor but Not Toll-Like Receptor 2 Is Essential for MyD88-Dependent Th17 Immunity to Coccidioides Infection. Infection and Immunity, 2014, 82, 2106-2114.	2.2	33
40	Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling. Fungal Genetics and Biology, 2013, 56, 1-8.	2.1	7
41	Interleukin 1 Enhances Vaccine-Induced Antifungal T-Helper 17 Cells and Resistance Against Blastomyces dermatitidis Infection. Journal of Infectious Diseases, 2013, 208, 1175-1182.	4.0	24
42	Structure and Function of a Fungal Adhesin that Binds Heparin and Mimics Thrombospondin-1 by Blocking T Cell Activation and Effector Function. PLoS Pathogens, 2013, 9, e1003464.	4.7	28
43	Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathogens, 2013, 9, e1003768.	4.7	30
44	Tc17 Cells Mediate Vaccine Immunity against Lethal Fungal Pneumonia in Immune Deficient Hosts Lacking CD4+ T Cells. PLoS Pathogens, 2012, 8, e1002771.	4.7	89
45	Limited Model Antigen Expression by Transgenic Fungi Induces Disparate Fates during Differentiation of Adoptively Transferred T Cell Receptor Transgenic CD4+T Cells: Robust Activation and Proliferation with Weak Effector Function during Recall. Infection and Immunity, 2012, 80, 787-797.	2.2	5
46	Fungi Subvert Vaccine T Cell Priming at the Respiratory Mucosa by Preventing Chemokine-Induced Influx of Inflammatory Monocytes. Immunity, 2012, 36, 680-692.	14.3	62
47	Immunity to fungi. Current Opinion in Immunology, 2012, 24, 449-458.	5.5	121
48	Adaptive Immunity to Fungi. Annual Review of Immunology, 2012, 30, 115-148.	21.8	181
49	Protective antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cell help and cognate antigen in mice. Journal of Clinical Investigation, 2012, 122, 987-999.	8.2	57
50	Vaccine Immunity to Coccidioidomycosis Occurs by Early Activation of Three Signal Pathways of T Helper Cell Response (Th1, Th2, and Th17). Infection and Immunity, 2011, 79, 4511-4522.	2.2	87
51	Safety, Tolerability, and Immunogenicity of a Recombinant, Genetically Engineered, Live-Attenuated Vaccine against Canine Blastomycosis. Vaccine Journal, 2011, 18, 783-789.	3.1	25
52	A TCR Transgenic Mouse Reactive with Multiple Systemic Dimorphic Fungi. Journal of Immunology, 2011, 187, 1421-1431.	0.8	43
53	Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. Journal of Clinical Investigation, 2011, 121, 554-568.	8.2	201
54	Dynamic Interplay among Monocyte-Derived, Dermal, and Resident Lymph Node Dendritic Cells during the Generation of Vaccine Immunity to Fungi. Cell Host and Microbe, 2010, 7, 474-487.	11.0	63

#	Article	IF	CITATIONS
55	Indirect Regulation of CD4 T-Cell Responses by Tumor Necrosis Factor Receptors in an Acute Viral Infection. Journal of Virology, 2007, 81, 6502-6512.	3.4	13
56	$\hat{V}^21 + \hat{J}^21.1 + \hat{V}^22 + \hat{J}^249 + \text{CD4} + \text{T}$ Cells Mediate Resistance against Infection with Blastomyces dermatitidis. Infection and Immunity, 2007, 75, 193-200.	2.2	19
57	Global Control of Dimorphism and Virulence in Fungi. Science, 2006, 312, 583-588.	12.6	328
58	Analysis of non-adhesive pathogenic mechanisms of BAD1 onBlastomyces dermatitidis. Medical Mycology, 2006, 44, 41-49.	0.7	10
59	Differential Requirements of T Cell Subsets for CD40 Costimulation in Immunity toBlastomyces dermatitidis. Journal of Immunology, 2006, 176, 5538-5547.	0.8	15
60	IL-12 Is Required for Induction but Not Maintenance of Protective, Memory Responses to Blastomyces dermatitidis: Implications for Vaccine Development in Immune-Deficient Hosts. Journal of Immunology, 2005, 175, 5288-5297.	0.8	31
61	CD28 Is Required for Optimal Induction, but Not Maintenance, of Vaccine-Induced Immunity to Blastomyces dermatitidis. Infection and Immunity, 2005, 73, 7436-7441.	2.2	12
62	Progress in vaccination for histoplasmosis and blastomycosis: Coping with cellular immunity. Medical Mycology, 2005, 43, 381-389.	0.7	34
63	Vaccine Immunity to Pathogenic Fungi Overcomes the Requirement for CD4 Help in Exogenous Antigen Presentation to CD8+ T Cells. Journal of Experimental Medicine, 2003, 197, 1405-1416.	8.5	174
64	Requisite Elements in Vaccine Immunity to <i>Blastomyces dermatitidis</i> : Plasticity Uncovers Vaccine Potential in Immune-Deficient Hosts. Journal of Immunology, 2002, 169, 6969-6976.	0.8	63
65	BAD1, an Essential Virulence Factor of <i> Blastomyces dermatitidis </i> , Suppresses Host TNF-α Production Through TGF-β-Dependent and -Independent Mechanisms. Journal of Immunology, 2002, 168, 5746-5755.	0.8	72
66	Investigation of Anti–Wlâ€1 Adhesin Antibodyâ€Mediated Protection in Experimental Pulmonary Blastomycosis. Journal of Infectious Diseases, 2000, 181, 1720-1728.	4.0	27
67	Mutation of the WI-1 gene yields an attenuated Blastomyces dermatitidis strain that induces host resistance. Journal of Clinical Investigation, 2000, 106, 1381-1389.	8.2	83
68	Targeted Gene Disruption Reveals an Adhesin Indispensable for Pathogenicity of Blastomyces dermatitidis. Journal of Experimental Medicine, 1999, 189, 1207-1216.	8.5	144