Vincent FerriÃ"res

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydrate Research, 2008, 343, 1897-1923.	2.3	151
2	Molecular Interactions of \hat{I}^2 -(1 \hat{a} †'3)-Glucans with Their Receptors. Molecules, 2015, 20, 9745-9766.	3.8	123
3	A new synthesis of O-glycosides from totally O-unprotected glycosyl donors. Tetrahedron Letters, 1995, 36, 2749-2752.	1.4	81
4	Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-β-(1,3)-glucans and immunostimulatory effects. Glycobiology, 2005, 15, 393-407.	2.5	76
5	1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors. Tetrahedron, 2005, 61, 9118-9128.	1.9	72
6	A convenient synthesis of alkyl d-glycofuranosiduronic acids and alkyl d-glycofuranosides from unprotected carbohydrates. Carbohydrate Research, 1998, 311, 25-35.	2.3	64
7	A Single UDP-galactofuranose Transporter Is Required for Galactofuranosylation in Aspergillus fumigatus. Journal of Biological Chemistry, 2009, 284, 33859-33868.	3.4	58
8	Synthetic UDP-Furanoses as Potent Inhibitors of Mycobacterial Galactan Biogenesis. Chemistry and Biology, 2010, 17, 1356-1366.	6.0	46
9	A General and Diastereoselective Synthesis of 1,2-cis-Hexofuranosides from 1,2-trans-Thiofuranosyl Donors. European Journal of Organic Chemistry, 2000, 2000, 1423-1431.	2.4	43
10	Natural glycans and glycoconjugates as immunomodulating agents. Natural Product Reports, 2011, 28, 937.	10.3	43
11	A new synthesis ofD-glycosiduronates from unprotectedD-uronic acids. Journal of the Chemical Society Chemical Communications, 1995, , 1391-1393.	2.0	41
12	Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Organic and Biomolecular Chemistry, 2015, 13, 8393-8404.	2.8	39
13	Amphitropic liquid-crystalline properties of some novel alkyl furanosides. Journal of Materials Chemistry, 1995, 5, 2209-2220.	6.7	38
14	Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydrate Research, 2012, 356, 44-61.	2.3	38
15	General One-Step Synthesis of Free Hexofuranosyl 1-Phosphates Using Unprotected 1-Thioimidoyl Hexofuranosides. Journal of Organic Chemistry, 2005, 70, 847-855.	3.2	37
16	Recent Progress in the Field of β-(1,3)-Glucans and New Applications. Mini-Reviews in Medicinal Chemistry, 2006, 6, 1341-1349.	2.4	36
17	A novel synthesis of d-galactofuranosyl, d-glucofuranosyl and d-mannofuranosyl 1-phosphates based on remote activation of new and free hexofuranosyl donors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3515-3518.	2.2	35
18	First Intramolecular Aglycon Delivery onto a D-Fucofuranosyl Entity for the Synthesis of α-D-Fucofuranose-Containing Disaccharides. European Journal of Organic Chemistry, 2003, 2003, 1285-1293.	2.4	34

VINCENT FERRIÃ[¨]RES

#	Article	IF	CITATIONS
19	Structural and biochemical characterization of the laminarinase <i>Zg</i> LamC _{GH16} from <i>Zobellia galactanivorans</i> suggests preferred recognition of branched laminarin. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 173-184.	2.5	34
20	An efficient route to per-O-acetylated hexofuranoses. Carbohydrate Research, 1998, 314, 79-83.	2.3	33
21	New Biocompatible Cationic Amphiphiles Derivative from Glycine Betaine: A Novel Family of Efficient Nonviral Gene Transfer Agents. Biochemical and Biophysical Research Communications, 1998, 251, 360-365.	2.1	33
22	Cationic lipids derived from glycine betaine promote efficient and non-toxic gene transfection in cultured hepatocytes. Journal of Gene Medicine, 2002, 4, 415-427.	2.8	33
23	Synthesis of the glycosyl phosphatidyl inositol anchor of rat brain Thy-1. Tetrahedron Letters, 1999, 40, 679-682.	1.4	32
24	Versatile Synthesis of Rare Nucleotide Furanoses. Organic Letters, 2007, 9, 5227-5230.	4.6	31
25	Enzyme-Catalyzed Synthesis of Furanosyl Nucleotides. Organic Letters, 2008, 10, 161-163.	4.6	31
26	Probing UDP-galactopyranose mutase binding pocket: A dramatic effect on substitution of the 6-position of UDP-galactofuranose. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 814-816.	2.2	31
27	New oligo-β-(1,3)-glucan derivatives as immunostimulating agents. Bioorganic and Medicinal Chemistry, 2010, 18, 348-357.	3.0	31
28	Enzymatic synthesis of oligo-d-galactofuranosides and l-arabinofuranosides: from molecular dynamics to immunological assays. Organic and Biomolecular Chemistry, 2010, 8, 2092.	2.8	31
29	Probing β-(1→3)-d-glucans interactions with recombinant human receptors using high-resolution NMR studies. Carbohydrate Research, 2011, 346, 1490-1494.	2.3	28
30	Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase. Glycobiology, 2015, 25, 420-427.	2.5	27
31	Two-Step Synthesis of Per-O-acetylfuranoses: Optimization and Rationalization. Journal of Organic Chemistry, 2012, 77, 1301-1307.	3.2	26
32	An ethoxylated surfactant enhances the penetration of the sulfated laminarin through leaf cuticle and stomata, leading to increased induced resistance against grapevine downy mildew. Physiologia Plantarum, 2016, 156, 338-350.	5.2	26
33	A step further in Peer Instruction: Using the Stepladder technique to improve learning. Computers and Education, 2015, 91, 1-13.	8.3	24
34	A new synthesis of the oligosaccharide domain of acarbose. Carbohydrate Research, 2003, 338, 2779-2792.	2.3	22
35	Engineering Ribonucleoside Triphosphate Specificity in a Thymidylyltransferase. Biochemistry, 2008, 47, 8719-8725.	2.5	22
36	Oligo-β-(1 → 3)-glucans: Impact of Thio-Bridges on Immunostimulating Activities and the Development of Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 8280-8292.	6.4	22

VINCENT FERRIÃ"RES

#	Article	IF	CITATIONS
37	New 4-deoxy-(1→3)-β-d-glucan-based oligosaccharides and their immunostimulating potential. Carbohydrate Research, 2011, 346, 2213-2221.	2.3	21
38	Exploring the synthetic potency of the first furanothioglycoligase through original remote activation. Organic and Biomolecular Chemistry, 2011, 9, 8371.	2.8	21
39	Diastereospecific synthesis and amphiphilic properties of new alkyl β-D-fructopyranosides. Journal of the Chemical Society Perkin Transactions II, 1999, , 951-960.	0.9	20
40	A Chemoenzymatic Approach for the Synthesis of Unnatural Disaccharides ContainingD-Galacto- orD-Fucofuranosides. European Journal of Organic Chemistry, 2005, 2005, 4860-4869.	2.4	20
41	Synthesis of galactofuranose-containing disaccharides using thioimidoyl-type donors. Carbohydrate Research, 2006, 341, 2759-2768.	2.3	19
42	Influencing the regioselectivity of lipase-catalyzed hydrolysis with [bmim]PF6. Tetrahedron Letters, 2009, 50, 2083-2085.	1.4	19
43	A NEW APPROACH TO A DISACCHARIDIC HAPTEN CONTAINING A GALACTOFURANOSYL ENTITY. Journal of Carbohydrate Chemistry, 2001, 20, 855-865.	1.1	17
44	Efficient gene transfer into human epithelial cell lines using glycosylated cationic carriers and neutral glycosylated co-lipids. Blood Cells, Molecules, and Diseases, 2004, 32, 271-282.	1.4	17
45	Epoxidation of allylic alcohols in aqueous solutions of non surfactant amphiphilic sugars. Chemical Communications, 2001, , 2460-2461.	4.1	16
46	FirstO-Glycosylation from Unprotected 1-Thioimidoyl Hexofuranosides Assisted by Divalent Cations. Journal of Organic Chemistry, 2007, 72, 5743-5747.	3.2	16
47	Stereoselective Chemoenzymatic Synthesis of UDPâ€1,2â€ <i>cis</i> â€furanoses from α,βâ€Furanosyl 1â€Phos European Journal of Organic Chemistry, 2008, 2008, 5988-5994.	bhates. 2.4	15
48	Biological Properties of (1 → 3)-β- <scp>d</scp> -Glucan-Based Synthetic Oligosaccharides. Journal of Medicinal Food, 2011, 14, 369-376.	1.5	15
49	Studies of a furanoside as antimycobacterial agent loaded into a biodegradable PBAT/sodium caseinate support. Carbohydrate Research, 2011, 346, 1541-1545.	2.3	14
50	Identification of Three Elicitins and a Galactan-Based Complex Polysaccharide from a Concentrated Culture Filtrate of Phytophthora infestans Efficient against Pectobacterium atrosepticum. Molecules, 2014, 19, 15374-15390.	3.8	14
51	Distinguishing Galactoside Isomers with Mass Spectrometry and Gas-Phase Infrared Spectroscopy. Journal of the American Chemical Society, 2021, 143, 10509-10513.	13.7	14
52	Sulfur atom configuration of sulfinyl galactofuranosides determines different reactivities in glycosylation reactions. Tetrahedron Letters, 2000, 41, 5515-5519.	1.4	13
53	Double diastereoselection explains limitations in synthesizing mannose-containing β-(1,3)-glucans. Carbohydrate Research, 2010, 345, 1366-1370.	2.3	13
54	Alkyl Galactofuranosides Strongly Interact with Leishmania donovani Membrane and Provide Antileishmanial Activity. Antimicrobial Agents and Chemotherapy, 2014, 58, 2156-2166.	3.2	13

VINCENT FERRIÃ"RES

#	Article	IF	CITATIONS
55	Spectroscopic diagnostic for the ring-size of carbohydrates in the gas phase: furanose and pyranose forms of GalNAc. Physical Chemistry Chemical Physics, 2019, 21, 12460-12467.	2.8	13
56	Identification and Quantification of Any Isoforms of Carbohydrates by 2D UV-MS Fingerprinting of Cold Ions. Analytical Chemistry, 2020, 92, 14624-14632.	6.5	13
57	Arabinogalactanâ€like Glycoproteins from <i>Ulva lactuca</i> (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. Journal of Phycology, 2021, 57, 619-635.	2.3	13
58	Synthetic UDP-furanoses inhibit the growth of the parasite Leishmania. Carbohydrate Research, 2010, 345, 1299-1305.	2.3	11
59	From algal polysaccharides to cyclodextrins to stabilize a urease inhibitor. Carbohydrate Polymers, 2014, 112, 145-151.	10.2	11
60	Unexpected fluorous solvent effect on oxidation of 1-thioglycosides. Tetrahedron: Asymmetry, 2001, 12, 2389-2393.	1.8	10
61	A fully enzymatic esterification/transesterification sequence for the preparation of symmetrical and unsymmetrical trehalose diacyl conjugates. Green Chemistry, 2017, 19, 987-995.	9.0	10
62	Araf51 with improved transglycosylation activities: one engineered biocatalyst for one specific acceptor. Carbohydrate Research, 2015, 402, 50-55.	2.3	9
63	Formation of Amphiphilic Molecules from the Most Common Marine Polysaccharides, toward a Sustainable Alternative?. Molecules, 2021, 26, 4445.	3.8	9
64	The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related β- <scp>d</scp> -galactofuranosyl-pyranoside disaccharides. Organic and Biomolecular Chemistry, 2014, 12, 3080-3089.	2.8	8
65	Synthesis and evaluation of 1,2-trans alkyl galactofuranoside mimetics as mycobacteriostatic agents. Organic and Biomolecular Chemistry, 2015, 13, 4940-4952.	2.8	8
66	Biocatalyzed synthesis of difuranosides and their ability to trigger production of TNF-α. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1550-1553.	2.2	8
67	Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms. Journal of Organic Chemistry, 2017, 82, 7114-7122.	3.2	8
68	Hydrophobized laminarans as new biocompatible anti-oomycete compounds for grapevine protection. Carbohydrate Polymers, 2019, 225, 115224.	10.2	8
69	Synthesis of an Exhaustive Library of Naturally Occurring Gal <i>f</i> -Man <i>p</i> and Gal <i>p</i> -Man <i>p</i> Disaccharides. Toward Fingerprinting According to Ring Size by Advanced Mass Spectrometry-Based IM-MS and IRMPD. Journal of Organic Chemistry, 2021, 86, 6390-6405.	3.2	8
70	Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110383.	5.0	7
71	Synthesis of 4-Methylumbellifer-7-yl-alpha-D-Mannopyranoside: An Introduction to Modern Glycosylation Reactions. Journal of Chemical Education, 2002, 79, 1353.	2.3	5
72	Thioimidoyl furanosides as first inhibitors of the α-l-arabinofuranosidase AbfD3. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 434-438.	2.2	5

VINCENT FERRIÃ[¨]RES

#	Article	IF	CITATIONS
73	Chapter 19. How recent knowledge on furano-specific enzymes has renewed interest for the synthesis of glycofuranosyl-containing conjugates. Carbohydrate Chemistry, 2014, , 401-417.	0.3	5
74	Direct access to new \hat{l}^2 -d-galactofuranoconjugates: application to the synthesis of galactofuranosyl-l-cysteine and l-serine. Tetrahedron Letters, 2011, 52, 1121-1123.	1.4	4
75	Galactofuranosidase from JHA 19 Streptomyces sp.: subcloning and biochemical characterization. Carbohydrate Research, 2019, 480, 35-41.	2.3	4
76	Saponin contents in the starfish Echinaster sepositus: Chemical characterization, qualitative and quantitative distribution. Biochemical Systematics and Ecology, 2021, 96, 104262.	1.3	4
77	Regioselective glycosylation: What's new?. Carbohydrate Chemistry, 2017, , 104-134.	0.3	4
78	In vitro and in vivo immunomodulatory properties of octyl-β-d-galactofuranoside during Leishmania donovani infection. Parasites and Vectors, 2019, 12, 600.	2.5	3
79	6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity. Organic and Biomolecular Chemistry, 2020, 18, 1462-1475.	2.8	3
80	Impact of glycosylation on physico–chemical and biological properties of nitrification inhibitors. Tetrahedron, 2012, 68, 7095-7102.	1.9	2
81	Characterization of biodegradable poly(butylene adipate-co-terephtalate)/sodium caseinate films loaded with an alkyl furanoside as antimicrobial agent. Journal of Materials Science, 2012, 47, 5806-5814.	3.7	2
82	Environmentally benign glycosylation of aryl pyranosides and aryl/alkyl furanosides demonstrating the versatility of thermostable CGTase from Thermoanaerobacterium sp Green Chemistry, 2014, 16, 3803-3809.	9.0	2
83	Efficient isomerization of methyl arabinofuranosides into corresponding arabinopyranosides in presence of pyridine. Carbohydrate Research, 2016, 433, 63-66.	2.3	2
84	β-(1→3)-Glucan-mannitol conjugates: scope and amazing results. Annals of Translational Medicine, 2014, 2, 12.	1.7	2
85	Synthesis and biological properties of galactofuranosyl-containing fluorescent dyes. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 152-155.	2.2	1
86	Benzyl 4,6-di-O-acetyl-2-O-benzoyl-β-D-glucopyranoside. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2286-o2288.	0.2	0
87	Modulation of the Activity and Regioselectivity of a Glycosidase: Development of a Convenient Tool for the Synthesis of Specific Disaccharides. Molecules, 2021, 26, 5445.	3.8	0
88	STUDY OF GLYCOFURANOSYL TRANSFERASES. A GENERAL SYNTHESIS OF SUITABLE HEXOFURANOSYL DONORS. , 2002, , .		0
89	4-Nitrophenyl α-L-rhamnopyranoside hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o379-o379.	0.2	0
90	Chemo-enzymatic synthesis of an original arabinofuranosyl cluster: optimization of the enzymatic conditions. Arkivoc, 2013, 2013, 123-132.	0.5	0

0

#	Article	IF	CITATIONS
91	Chemical Synthesis of Oligo-(1→3)-β-D-Glucans. , 2013, , 83-101.		0

92 Contribution of Biocatalysis to the Synthesis of \hat{I}^2 -(1,3)-Glucans. , 2013, , 102-111.