Christopher A Saski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726916/publications.pdf

Version: 2024-02-01

65 papers

4,683 citations

28 h-index 65 g-index

77 all docs

77
docs citations

77 times ranked

5267 citing authors

#	Article	IF	Citations
1	An InÂVitro Co-Culture System for Rapid Differential Response to <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> Race 4 in Three Cotton Cultivars. Plant Disease, 2022, 106, 990-995.	1.4	5
2	Ppe.XapF: High throughput KASP assays to identify fruit response to Xanthomonas arboricola pv. pruni (Xap) in peach. PLoS ONE, 2022, 17, e0264543.	2.5	13
3	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
4	Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnology, 2021, 21, 4.	3.3	10
5	Genetic Architecture of Maize Rind Strength Revealed by the Analysis of Divergently Selected Populations. Plant and Cell Physiology, 2021, 62, 1199-1214.	3.1	14
6	Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances, $2021, 7, \dots$	10.3	53
7	Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. Plants, 2021, 10, 1775.	3.5	10
8	Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics, 2020, 112, 1233-1244.	2.9	27
9	Homogeneity among glyphosate-resistant Amaranthus palmeri in geographically distant locations. PLoS ONE, 2020, 15, e0233813.	2.5	13
10	Autonomous replication sequences from the Amaranthus palmeri eccDNA replicon enable replication in yeast. BMC Research Notes, 2020, 13 , 330 .	1.4	14
11	Transcriptomic profiles of non-embryogenic and embryogenic callus cells in a highly regenerative upland cotton line (Gossypium hirsutum L.). BMC Developmental Biology, 2020, 20, 25.	2.1	19
12	Quantitative Trait Loci Associated with Rotylenchulus reniformis Host Suitability in Soybean. Phytopathology, 2020, 110, 1511-1521.	2.2	8
13	A simple plant high-molecular-weight DNA extraction method suitable for single-molecule technologies. Plant Methods, 2020, 16, 38.	4.3	19
14	The EccDNA Replicon: A Heritable, Extranuclear Vehicle That Enables Gene Amplification and Glyphosate Resistance in <i>Amaranthus palmeri</i>). Plant Cell, 2020, 32, 2132-2140.	6.6	58
15	Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 2020, 52, 525-533.	21.4	249
16	Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize. Plant Cell, 2019, 31, 1968-1989.	6.6	63
17	Dissecting Resistance to <i>Phytophthora cinnamomi</i> in Interspecific Hybrid Chestnut Crosses Using Sequence-Based Genotyping and QTL Mapping. Phytopathology, 2019, 109, 1594-1604.	2.2	22
18	The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biology and Evolution, 2019, 11, 2927-2940.	2.5	31

#	Article	IF	Citations
19	A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics, 2019, 20, 420.	2.8	73
20	Transcriptome Response of Female Culicoides sonorensis Biting Midges (Diptera: Ceratopogonidae) to Early Infection with Epizootic Hemorrhagic Disease Virus (EHDV-2). Viruses, 2019, 11, 473.	3.3	5
21	MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 2019, 6, 48.	6.3	64
22	Omics Potential in Herbicide-Resistant Weed Management. Plants, 2019, 8, 607.	3.5	17
23	Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research, 2019, 6, 12.	6.3	58
24	DRMY1, a Myb-Like Protein, Regulates Cell Expansion and Seed Production in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 285-302.	3.1	15
25	Goosegrass Control and Turfgrass Injury Following Metribuzin and Topramezone Application with Immediate Irrigation. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1621-1624.	1.0	2
26	Draft Genome Sequence of the 1,4-Dioxane-Degrading Bacterium Pseudonocardia dioxanivorans BERK-1. Genome Announcements, 2018, 6, .	0.8	6
27	The power and potential of genomics in weed biology and management. Pest Management Science, 2018, 74, 2216-2225.	3.4	76
28	Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3332-3337.	7.1	159
29	An EST-SSR based genetic linkage map and identification of QTLs for anthracnose disease resistance in water yam (Dioscorea alata L.). PLoS ONE, 2018, 13, e0197717.	2.5	28
30	The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics, 2018, 19, 624.	2.8	19
31	Fixation and Laser Capture Microdissection of Plant Tissue for RNA Extraction and RNASeq Library Preparation. Current Protocols in Plant Biology, 2018, 3, 14-32.	2.8	3
32	RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS ONE, 2018, 13, e0195488.	2.5	35
33	Genomic Sequencing of Japanese Plum (Prunus salicina Lindl.) Mutants Provides a New Model for Rosaceae Fruit Ripening Studies. Frontiers in Plant Science, 2018, 9, 21.	3.6	55
34	Bacterial and Viral Products Affect Differential Pattern Recognition Receptor Activation of Chicken Thrombocytes Evidenced through RNA Sequencing. Journal of Immunology, 2017, 199, 774-781.	0.8	13
35	Low glucose concentrations within typical industrial operating conditions have minimal effect on the transcriptome of recombinant CHO cells. Biotechnology Progress, 2017, 33, 771-785.	2.6	7
36	Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization. Insect Biochemistry and Molecular Biology, 2017, 81, 80-90.	2.7	48

#	Article	IF	CITATIONS
37	Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum) Tj ETQq1 1 7, 15274.	0.784314 3.3	rgBT /Over 23
38	The unique genomic landscape surrounding the EPSPS gene in glyphosate resistant Amaranthus palmeri: a repetitive path to resistance. BMC Genomics, 2017, 18, 91.	2.8	54
39	Transcriptome Profile of the Chicken Thrombocyte: New Implications as an Advanced Immune Effector Cell. PLoS ONE, 2016, 11, e0163890.	2.5	25
40	Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.). BMC Plant Biology, 2015, 15, 258.	3.6	13
41	Entamoeba histolytica Dmc1 Catalyzes Homologous DNA Pairing and Strand Exchange That Is Stimulated by Calcium and Hop2-Mnd1. PLoS ONE, 2015, 10, e0139399.	2.5	9
42	Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens. Frontiers in Plant Science, 2015, 6, 791.	3.6	22
43	BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (<i>Gossypium</i>) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 1095-1105.	1.8	20
44	Making a chocolate chip: development and evaluation of a 6K SNP array forTheobroma cacao. DNA Research, 2015, 22, 279-291.	3.4	46
45	Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.	17.5	1,560
46	BAC Sequencing Using Pooled Methods. Methods in Molecular Biology, 2015, 1227, 55-67.	0.9	6
47	Impact of the blood meal on humoral immunity and microbiota in the gut of female Culicoides sonorensis. Veterinaria Italiana, 2015, 51, 385-92.	0.5	10
48	Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries. PLoS ONE, 2015, 10, e0134031.	2.5	29
49	The Reference Transcriptome of the Adult Female Biting Midge (Culicoides sonorensis) and Differential Gene Expression Profiling during Teneral, Blood, and Sucrose Feeding Conditions. PLoS ONE, 2014, 9, e98123.	2.5	20
50	Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae). Parasites and Vectors, 2014, 7, 388.	2.5	17
51	Studying Culicoides vectors of BTV in the post-genomic era: Resources, bottlenecks to progress and future directions. Virus Research, 2014, 182, 43-49.	2.2	49
52	A physical map of the Chinese chestnut (Castanea mollissima) genome and its integration with the genetic map. Tree Genetics and Genomes, 2013, 9, 525-537.	1.6	36
53	Choline Supplementation and <scp>DNA</scp> Methylation in the Hippocampus and Prefrontal Cortex of Rats Exposed to Alcohol During Development. Alcoholism: Clinical and Experimental Research, 2012, 36, 1701-1709.	2.4	121
54	Isolation and characterization of 12 microsatellites for the commercially important sablefish, Anoplopoma fimbria. Conservation Genetics Resources, 2012, 4, 415-417.	0.8	5

#	Article	IF	CITATIONS
55	A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6. BMC Genomics, 2011, 12, 413.	2.8	13
56	Complete Plastid Genome Sequences of Three Rosids (Castanea, Prunus, Theobroma): Evidence for At Least Two Independent Transfers of rpl22 to the Nucleus. Molecular Biology and Evolution, 2011, 28, 835-847.	8.9	203
57	Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine. PLoS ONE, 2011, 6, e16214.	2.5	41
58	Genomic tools development for Aquilegia: construction of a BAC-based physical map. BMC Genomics, 2010, 11, 621.	2.8	13
59	Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in coâ€distributed species. Molecular Ecology, 2010, 19, 5043-5060.	3.9	47
60	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
61	The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theoretical and Applied Genetics, 2008, 116, 723-37.	3.6	96
62	Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theoretical and Applied Genetics, 2007, 115, 571-590.	3.6	194
63	Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theoretical and Applied Genetics, 2006, 112, 1503-1518.	3.6	157
64	Involvement of Coenzyme M during Aerobic Biodegradation of Vinyl Chloride and Ethene by Pseudomonas putida Strain AJ and Ochrobactrum sp. Strain TD. Applied and Environmental Microbiology, 2006, 72, 3756-3758.	3.1	33
65	Complete Chloroplast Genome Sequence of Glycine max and Comparative Analyses with other Legume Genomes. Plant Molecular Biology, 2005, 59, 309-322.	3.9	255