Jonah W Jurss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726874/publications.pdf

Version: 2024-02-01

37	3,794 citations	279798 23 h-index	345221 36 g-index
papers	citations	II-IIIQEX	g-mdex
37 all docs	37 docs citations	37 times ranked	3723 citing authors

#	Article	IF	CITATIONS
1	Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1954-1965.	15.6	788
2	One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH ₂)] ²⁺ and [Ru(tpy)(bpz)(OH ₂)] ²⁺ . Journal of the American Chemical Society, 2008, 130, 16462-16463.	13.7	628
3	Mechanisms of Water Oxidation from the Blue Dimer to Photosystem II. Inorganic Chemistry, 2008, 47, 1727-1752.	4.0	385
4	Catalytic Water Oxidation by Single-Site Ruthenium Catalysts. Inorganic Chemistry, 2010, 49, 1277-1279.	4.0	298
5	Single-Site, Catalytic Water Oxidation on Oxide Surfaces. Journal of the American Chemical Society, 2009, 131, 15580-15581.	13.7	234
6	Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(<scp>ii</scp>) polypyridyl catalysts. Energy and Environmental Science, 2014, 7, 1477-1488.	30.8	200
7	Mediator-assisted water oxidation by the ruthenium "blue dimerâ€ <i>cis</i> , <i>cis</i> -[(bpy) ₂ (H ₂ O)RuORu(OH ₂)(bpy) _{2Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17632-17635.}	>গু.1sup>4	+ x/s up>.
8	Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science, 2015, 6, 4954-4972.	7.4	99
9	Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO ₂ or CO to CH ₄ . Journal of the American Chemical Society, 2019, 141, 6617-6622.	13.7	94
10	Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer. Inorganic Chemistry, 2010, 49, 3980-3982.	4.0	72
11	Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of [Ru(bpy) ₂ ((4,4′â€PO ₃ H ₂) ₂ bpy)] ²⁺ in TiO ₂ Nanoparticle Films in Aqueous Environments. ChemSusChem, 2011, 4, 216-227.	6.8	71
12	Structure and Electronic Configurations of the Intermediates of Water Oxidation in Blue Ruthenium Dimer Catalysis. Journal of the American Chemical Society, 2012, 134, 4625-4636.	13.7	68
13	Proton-coupled electron transfer at modified electrodes by multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1461-9.	7.1	60
14	Electrocatalytic Reduction of CO ₂ to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities. Inorganic Chemistry, 2016, 55, 6085-6094.	4.0	60
15	Electrocatalytic CO ₂ reduction with nickel complexes supported by tunable bipyridyl-N-heterocyclic carbene donors: understanding redox-active macrocycles. Chemical Communications, 2018, 54, 3351-3354.	4.1	60
16	Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection. Journal of the American Chemical Society, 2020, 142, 15917-15930.	13.7	58
17	Interfacial Electron Transfer Dynamics for [Ru(bpy) ₂ 2bpy)] ²⁺ Sensitized TiO ₂ in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics, Journal of Physical Chemistry C. 2011, 115, 7081-7091.	3.1	56
18	Robust and Selective Cobalt Catalysts Bearing Redox-Active Bipyridyl- <i>N</i> heterocyclic Carbene Frameworks for Electrochemical CO ₂ Reduction in Aqueous Solutions. ACS Catalysis, 2019, 9, 7398-7408.	11.2	52

#	Article	IF	Citations
19	Electronic Structure of the Water Oxidation Catalyst <i>ci>cis</i> , <i>cis</i> , <i>cis</i> ,Cis </td <td>ub4)((bpy)</td> <td><รฮb>2</td>	ub 4) ((bpy)	<ร ฮb >2
20	Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst. Journal of the American Chemical Society, 2011, 133, 15786-15794.	13.7	50
21	Enhanced Electrochemical CO ₂ Reduction by a Series of Molecular Rhenium Catalysts Decorated with Second-Sphere Hydrogen-Bond Donors. Inorganic Chemistry, 2020, 59, 6087-6099.	4.0	46
22	Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorganic Chemistry, 2018, 57, 9564-9575.	4.0	40
23	Photochemical CO2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore. Chemical Communications, 2019, 55, 993-996.	4.1	37
24	Surface Activation of Electrocatalysis at Oxide Electrodes. Concerted Electronâ^'Proton Transfer. Inorganic Chemistry, 2011, 50, 2076-2078.	4.0	26
25	Electro―and Photochemical Reduction of CO ₂ by Molecular Manganese Catalysts: Exploring the Positional Effect of Secondâ€Sphere Hydrogenâ€Bond Donors. ChemSusChem, 2021, 14, 662-670.	6.8	26
26	A Mononuclear Tungsten Photocatalyst for H ₂ Production. ACS Catalysis, 2018, 8, 4838-4847.	11.2	21
27	Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 343-355.	3.3	19
28	Selective Alkane C–H Bond Oxidation Catalyzed by a Non-Heme Iron Complex Featuring a Robust Tetradentate Ligand. Organometallics, 2018, 37, 4535-4539.	2.3	16
29	Synthesis of a pentadentate, polypyrazine ligand and its application in cobalt-catalyzed hydrogen production. Inorganic Chemistry Frontiers, 2017, 4, 1649-1653.	6.0	15
30	Synergistic effects of halogen bond and π–π interactions in thiophene-based building blocks. RSC Advances, 2015, 5, 82544-82548.	3.6	13
31	Synthesis, characterization, and electrocatalytic activity of bis(pyridylimino)isoindoline Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) complexes. Dalton Transactions, 2021, 50, 926-935.	3.3	12
32	High-spin enforcement in first-row metal complexes of a constrained polyaromatic ligand: synthesis, structure, and properties. New Journal of Chemistry, 2018, 42, 18667-18677.	2.8	8
33	Iron Redox Shuttles with Wide Optical Gap Dyes for Highâ€Voltage Dyeâ€Sensitized Solar Cells. ChemSusChem, 2021, 14, 3084-3096.	6.8	8
34	Lewis Acid–Lewis Base Interactions Promote Fast Interfacial Electron Transfers with a Pyridine-Based Donor Dye in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1516-1527.	5.1	6
35	Rational Design of a Cu Chelator That Mitigates Cuâ€Induced ROS Production by Amyloid Beta. ChemBioChem, 2022, 23, .	2.6	2
36	An Efficient Copper-Based Redox Shuttle Bearing a Hexadentate Polypyridyl Ligand for DSCs under Low-Light Conditions. ACS Applied Energy Materials, 2022, 5, 5964-5973.	5.1	2

#	Article	lF	CITATIONS
37	Designing Self-Assembled Dye–Redox Shuttle Systems via Interfacial π-Stacking in Dye-Sensitized Solar Cells for Enhanced Low Light Power Conversion. Energy & Fuels, 0, , .	5.1	O