Lionel Apetoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3724009/publications.pdf

Version: 2024-02-01

		18482	18130
122	29,795	62	120
papers	citations	h-index	g-index
130	130	130	36302
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CD4 T cell-intrinsic STING signaling controls the differentiation and effector functions of T _H 1 and T _H 9 cells., 2022, 10, e003459.		21
2	<scp>NLRP6</scp> negatively regulates type 2 immune responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3320-3336.	5.7	4
3	Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunology Research, 2022, 10, 900-916.	3.4	2
4	The Tumor Microenvironment Impairs Th1 IFN \hat{I}^3 Secretion through Alternative Splicing Modifications of <i>Irf1</i> Pre-mRNA. Cancer Immunology Research, 2021, 9, 324-336.	3.4	8
5	Harnessing TH9 cells in cancer immunotherapy. Seminars in Immunology, 2021, 52, 101477.	5.6	3
6	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 5	42 Td (edition
7	An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets. Cell Reports, 2020, 33, 108433.	6.4	54
8	Modulation of Determinant Factors to Improve Therapeutic Combinations with Immune Checkpoint Inhibitors. Cells, 2020, 9, 1727.	4.1	8
9	Anticancer effects of the microbiota: how the microbiome shapes the development of IL-9-producing T cells. British Journal of Cancer, 2020, 123, 497-498.	6.4	3
10	How does autophagy affect tumor-infiltrating immune cells?. , 2020, , 75-84.		0
11	Fas signaling-mediated TH9 cell differentiation favors bowel inflammation and antitumor functions. Nature Communications, 2019, 10, 2924.	12.8	34
12	Cleaved Caspase-3 Transcriptionally Regulates Angiogenesis-Promoting Chemotherapy Resistance. Cancer Research, 2019, 79, 5958-5970.	0.9	55
13	Can Immunogenic Chemotherapies Relieve Cancer Cell Resistance to Immune Checkpoint Inhibitors?. Frontiers in Immunology, 2019, 10, 1181.	4.8	20
14	The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers, 2019, 11, 860.	3.7	75
15	HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death and Disease, 2019, 10, 256.	6.3	81
16	Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nature Communications, 2019, 10, 1486.	12.8	189
17	PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncolmmunology, 2018, 7, e1433981.	4.6	167
18	The Secrets of T Cell Polarization. , 2018, , 69-95.		0

#	Article	IF	CITATIONS
19	Selective autophagy restricts IL-9 secretion from TH9 cells: relevance in cancer growth. Cell Cycle, 2018, 17, 391-392.	2.6	8
20	STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nature Communications, 2018, 9, 5226.	12.8	176
21	Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions. Frontiers in Immunology, 2018, 9, 1023.	4.8	43
22	Rationale for stimulator of interferon genes–targeted cancer immunotherapy. European Journal of Cancer, 2017, 75, 86-97.	2.8	47
23	Sirtuin-1 Activation Controls Tumor Growth by Impeding Th17 Differentiation via STAT3 Deacetylation. Cell Reports, 2017, 19, 746-759.	6.4	104
24	Immunotherapeutic properties of chemotherapy. Current Opinion in Pharmacology, 2017, 35, 83-88.	3.5	30
25	Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. Journal of Functional Foods, 2017, 33, 112-121.	3.4	36
26	Danger signals: Chemotherapy enhancers?. Immunological Reviews, 2017, 280, 175-193.	6.0	50
27	Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of TH9 cells. Nature Communications, 2017, 8, 559.	12.8	67
28	Signalling strength determines proapoptotic functions of STING. Nature Communications, 2017, 8, 427.	12.8	321
29	Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncolmmunology, 2017, 6, e1363139.	4.6	60
30	IRF8-dependent molecular complexes control the Th9 transcriptional program. Nature Communications, 2017, 8, 2085.	12.8	43
31	TH9 cells in anti-tumor immunity. Seminars in Immunopathology, 2017, 39, 39-46.	6.1	63
32	Protein kinase Cî, controls type 2 innate lymphoid cell and TH2 responses to house dust mite allergen. Journal of Allergy and Clinical Immunology, 2017, 139, 1650-1666.	2.9	23
33	IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 Production. Frontiers in Immunology, 2017, 8, 1184.	4.8	34
34	Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS ONE, 2017, 12, e0170823.	2.5	28
35	Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell, 2016, 30, 147-160.	16.8	410
36	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	14.3	645

#	Article	IF	CITATIONS
37	Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX–Bevacizumab Drug Treatment Regimen. Cancer Research, 2016, 76, 5241-5252.	0.9	203
38	Protection against malaria in mice is induced by blood stageâ€"arresting <i>histamine-releasing factor</i> (<i>HRF</i>)â€"deficient parasites. Journal of Experimental Medicine, 2016, 213, 1419-1428.	8.5	26
39	Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNF $\hat{l}\pm$. Oncogene, 2016, 35, 4611-4622.	5.9	40
40	Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Oncolmmunology, 2016, 5, e1054598.	4.6	144
41	Stress-Induced Depressive Behaviors Require a Functional NLRP3 Inflammasome. Molecular Neurobiology, 2016, 53, 4874-4882.	4.0	134
42	Human ectonucleotidase-expressing CD25 ^{high} Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncolmmunology, 2016, 5, e1055444.	4.6	39
43	AMPK Phosphorylation Modulates Pain by Activation of NLRP3 Inflammasome. Antioxidants and Redox Signaling, 2016, 24, 157-170.	5.4	85
44	Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget, 2016, 7, 9309-9321.	1.8	30
45	The immunosuppressive enzyme IL4I1 promotes FoxP3 ⁺ regulatory T lymphocyte differentiation. European Journal of Immunology, 2015, 45, 1772-1782.	2.9	41
46	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
47	Caspase-1 activation by NLRP3 inflammasome dampens IL-33-dependent house dust mite-induced allergic lung inflammation. Journal of Molecular Cell Biology, 2015, 7, 351-365.	3.3	94
48	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
49	Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?. Annals of Oncology, 2015, 26, 1813-1823.	1.2	219
50	Th9 Cells: A Novel CD4 T-cell Subset in the Immune War against Cancer. Cancer Research, 2015, 75, 475-479.	0.9	56
51	The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nature Immunology, 2015, 16, 859-870.	14.5	312
52	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	12.6	367
53	Immunogénicité de la chimiothérapie. Oncologie, 2015, 17, 345-353.	0.7	0
54	Radiotherapy and Immunogenic Cell Death. Seminars in Radiation Oncology, 2015, 25, 11-17.	2.2	354

#	Article	lF	CITATIONS
55	Enhancing the anticancer effects of 5-fluorouracil: Current challenges and future perspectives. Biomedical Journal, 2015, 38, 111.	3.1	42
56	Prospective Study of the Evolution of Blood Lymphoid Immune Parameters during Dacarbazine Chemotherapy in Metastatic and Locally Advanced Melanoma Patients. PLoS ONE, 2014, 9, e105907.	2.5	14
57	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
58	Liver X receptor \hat{l}^2 activation induces pyroptosis of human and murine colon cancer cells. Cell Death and Differentiation, 2014, 21, 1914-1924.	11.2	127
59	The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nature Immunology, 2014, 15, 758-766.	14.5	187
60	The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expert Review of Clinical Immunology, 2014, 10, 19-30.	3.0	48
61	Cell-Death-Associated Molecular Patterns As Determinants of Cancer Immunogenicity. Antioxidants and Redox Signaling, 2014, 20, 1098-1116.	5.4	36
62	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	12.6	1,580
63	Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 2013, 19, 57-64.	30.7	634
64	Dacarbazine-Mediated Upregulation of NKG2D Ligands on Tumor Cells Activates NK and CD8 T Cells and Restrains Melanoma Growth. Journal of Investigative Dermatology, 2013, 133, 499-508.	0.7	75
65	Immune effects of 5-fluorouracil. Oncolmmunology, 2013, 2, e23139.	4.6	35
66	SOCS3 Transactivation by PPARγ Prevents IL-17–Driven Cancer Growth. Cancer Research, 2013, 73, 3578-3590.	0.9	51
67	Metallothioneins negatively regulate IL-27-induced type 1 regulatory T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7802-7807.	7.1	48
68	Socs3 induction by PPARÎ ³ restrains cancer-promoting inflammation. Cell Cycle, 2013, 12, 2157-2158.	2.6	8
69	Bleomycin Exerts Ambivalent Antitumor Immune Effect by Triggering Both Immunogenic Cell Death and Proliferation of Regulatory T Cells. PLoS ONE, 2013, 8, e65181.	2.5	103
70	Chemotherapy and immunomodulation: from immunogenic chemotherapies to novel therapeutic strategies. Future Oncology, 2013, 9, 469-472.	2.4	11
71	Role of IL-17 and IL-17 Family Cytokines on Tumor Development. , 2013, , 219-230.		0
72	FOXP3 expression in cancer cells and anthracyclines efficacy in patients with primary breast cancer treated with adjuvant chemotherapy in the phase III UNICANCER-PACS 01 trial. Annals of Oncology, 2012, 23, 2552-2561.	1.2	31

#	Article	IF	Citations
73	Controversies on the role of Th17 in cancer: a TGF- \hat{l}^2 -dependent immunosuppressive activity?. Trends in Molecular Medicine, 2012, 18, 742-749.	6.7	75
74	Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression. Immunity, 2012, 36, 362-373.	14.3	275
75	Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy, 2012, 4, 43-57.	2.0	31
76	Relation between bevacizumab dose intensity and high-grade glioma survival: a retrospective study in two large cohorts. Journal of Neuro-Oncology, 2012, 107, 351-358.	2.9	47
77	Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 491-503.	8.5	303
78	Harnessing dendritic cells in cancer. Seminars in Immunology, 2011, 23, 42-49.	5.6	53
79	Type 1 regulatory T cells (Tr1) in autoimmunity. Seminars in Immunology, 2011, 23, 202-208.	5.6	141
80	Induction of regulatory Tr1 cells and inhibition of TH17 cells by IL-27. Seminars in Immunology, 2011, 23, 438-445.	5.6	142
81	<i>In situ</i> immune response after neoadjuvant chemotherapy for breast cancer predicts survival. Journal of Pathology, 2011, 224, 389-400.	4.5	204
82	Restoration of Antitumor Immunity Through Selective Inhibition of Myeloid Derived Suppressor Cells by Anticancer Therapies. Current Molecular Medicine, 2011, 11, 365-372.	1.3	64
83	Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 869-869.	8.5	6
84	Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. Journal of Experimental Medicine, 2011, 208, 1331-1331.	8.5	12
85	T-bet expression in intratumoral lymphoid structures after neoadjuvant trastuzumab plus docetaxel for HER2-overexpressing breast carcinoma predicts survival. British Journal of Cancer, 2011, 105, 366-371.	6.4	56
86	Cancer, Inflammasomes, and Adjuvanticity., 2011,, 151-163.		0
87	Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. Journal of Experimental Medicine, 2010, 207, 2187-2194.	8.5	1,652
88	Tim-3/Tim-3L Pathway as a Target for Restoring Effector Functions in Exhausted CD8 Lymphocytes in Tumors. Clinical Immunology, 2010, 135, S12.	3.2	0
89	Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 2010, 29, 482-491.	5.9	937
90	The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunology, 2010, 11, 854-861.	14.5	651

#	Article	IF	Citations
91	Desirable cell death during anticancer chemotherapy. Annals of the New York Academy of Sciences, 2010, 1209, 99-108.	3.8	70
92	Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. Journal of Clinical Investigation, 2010, 120, 457-71.	8.2	761
93	Tim-3/Galectin-9 Pathway: Regulation of Th1 Immunity through Promotion of CD11b+Ly-6G+ Myeloid Cells. Journal of Immunology, 2010, 185, 1383-1392.	0.8	243
94	Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Research, 2010, 70, 855-858.	0.9	326
95	Molecular Pathways in the Induction of Interleukin-27-Driven Regulatory Type 1 Cells. Journal of Interferon and Cytokine Research, 2010, 30, 381-388.	1.2	55
96	5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity. Cancer Research, 2010, 70, 3052-3061.	0.9	1,098
97	Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Seminars in Immunology, 2010, 22, 113-124.	5.6	183
98	Human FOXP3 and cancer. Oncogene, 2010, 29, 4121-4129.	5.9	118
99	Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178.	30.7	1,614
100	Witch Hunt against Tumor Cells Enhanced by Dendritic Cells. Annals of the New York Academy of Sciences, 2009, 1174, 51-60.	3.8	11
101	Immunogenic cancer cell death: a key-lock paradigm. Current Opinion in Immunology, 2008, 20, 504-511.	5.5	271
102	Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunology, Immunotherapy, 2008, 57, 1579-1587.	4.2	137
103	Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, 2008, 8, 59-73.	22.7	1,374
104	Molecular characteristics of immunogenic cancer cell death. Cell Death and Differentiation, 2008, 15, 3-12.	11.2	421
105	OR.13. Endogenous Danger Signals from Dying Tumor Cells Promote T-cell-dependent Antitumor Responses Which Determine the Efficacy of Conventional Anticancer Therapies. Clinical Immunology, 2008, 127, S8.	3.2	0
106	Cancer is not just a disease of a tissue: It is a host disease. Annales D'Endocrinologie, 2008, 69, 151-152.	1.4	2
107	Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends in Molecular Medicine, 2008, 14, 141-151.	6.7	108
108	Molecular Interactions between Dying Tumor Cells and the Innate Immune System Determine the Efficacy of Conventional Anticancer Therapies. Cancer Research, 2008, 68, 4026-4030.	0.9	198

#	Article	IF	CITATIONS
109	The Critical Role of IL-15 in the Antitumor Effects Mediated by the Combination Therapy Imatinib and IL-2. Journal of Immunology, 2008, 180, 6477-6483.	0.8	44
110	Pathologic Complete Response to Neoadjuvant Chemotherapy of Breast Carcinoma Is Associated with the Disappearance of Tumor-Infiltrating Foxp3+ Regulatory T Cells. Clinical Cancer Research, 2008, 14, 2413-2420.	7.0	277
111	The anticancer immune response: indispensable for therapeutic success?. Journal of Clinical Investigation, 2008, 118, 1991-2001.	8.2	520
112	CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. Journal of Clinical Investigation, 2008, 118, 3751-3761.	8.2	56
113	IL-18 Elicited Suppressor NK Cells with Immunoregulatory Functions. Blood, 2008, 112, 106-106.	1.4	1
114	Leveraging the Immune System during Chemotherapy: Moving Calreticulin to the Cell Surface Converts Apoptotic Death from "Silent―to Immunogenic. Cancer Research, 2007, 67, 7941-7944.	0.9	134
115	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	30.7	2,580
116	Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 2007, 13, 1050-1059.	30.7	2,657
117	Ectoâ€calreticulin in immunogenic chemotherapy. Immunological Reviews, 2007, 220, 22-34.	6.0	183
118	The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunological Reviews, 2007, 220, 47-59.	6.0	491
119	Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. Journal of Molecular Medicine, 2007, 85, 1069-1076.	3.9	68
120	Links between innate and cognate tumor immunity. Current Opinion in Immunology, 2007, 19, 224-231.	5.5	59
121	Immunogenic chemotherapy: discovery of a critical protein through proteomic analyses of tumor cells. Cancer Genomics and Proteomics, 2007, 4, 65-70.	2.0	11
122	A novel dendritic cell subset involved in tumor immunosurveillance. Nature Medicine, 2006, 12, 214-219.	30.7	377