
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3723644/publications.pdf Version: 2024-02-01

LE LIANC

#	Article	IF	CITATIONS
1	CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 2006, 34, W116-W118.	14.5	1,541
2	CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research, 2018, 46, W363-W367.	14.5	1,341
3	Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science, 1998, 7, 1884-1897.	7.6	949
4	CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Research, 2003, 31, 3352-3355.	14.5	936
5	Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins: Structure, Function and Bioinformatics, 1998, 33, 1-17.	2.6	258
6	Are Proteins Well-Packed?. Biophysical Journal, 2001, 81, 751-766.	0.5	248
7	On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics, 1998, 88, 83-102.	0.9	181
8	Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. Journal of Molecular Biology, 2001, 311, 891-907.	4.2	175
9	Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. , 1998, 33, 18-29.		157
10	Inferring Functional Relationships of Proteins from Local Sequence and Spatial Surface Patterns. Journal of Molecular Biology, 2003, 332, 505-526.	4.2	151
11	Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers. Proteins: Structure, Function and Bioinformatics, 2002, 47, 209-218.	2.6	149
12	Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces NFκB Signaling and Inflammatory Lung Injury. Scientific Reports, 2015, 5, 13135.	3.3	126
13	Predicting protein folding rates from geometric contact and amino acid sequence. Protein Science, 2008, 17, 1256-1263.	7.6	98
14	Interstrand Pairing Patterns in β-Barrel Membrane Proteins: The Positive-outside Rule, Aromatic Rescue, and Strand Registration Prediction. Journal of Molecular Biology, 2005, 354, 979-993.	4.2	93
15	Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins: Structure, Function and Bioinformatics, 2005, 59, 496-509.	2.6	85
16	Prediction of transmembrane helix orientation in polytopic membrane proteins. , 2006, 6, 13.		77
17	Structural Location of Disease-associated Single-nucleotide Polymorphisms. Journal of Molecular Biology, 2003, 327, 1021-1030.	4.2	74
18	Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18445-18450.	7.1	74

#	Article	IF	CITATIONS
19	Structure-based Analysis of VDAC1 Protein. Journal of Biological Chemistry, 2012, 287, 2179-2190.	3.4	73
20	Position-Dependence of Stabilizing Polar Interactions of Asparagine in Transmembrane Helical Bundlesâ€. Biochemistry, 2003, 42, 6400-6407.	2.5	70
21	Protein surface analysis for function annotation in high-throughput structural genomics pipeline. Protein Science, 2005, 14, 2972-2981.	7.6	70
22	Estimation of Amino Acid Residue Substitution Rates at Local Spatial Regions and Application in Protein Function Inference: A Bayesian Monte Carlo Approach. Molecular Biology and Evolution, 2006, 23, 421-436.	8.9	70
23	pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Research, 2004, 32, W555-W558.	14.5	68
24	Lipid-binding surfaces of membrane proteins: Evidence from evolutionary and structural analysis. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1092-1102.	2.6	68
25	Predicting Protein Function and Binding Profile via Matching of Local Evolutionary and Geometric Surface Patterns. Journal of Molecular Biology, 2009, 387, 451-464.	4.2	65
26	Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12735-12740.	7.1	62
27	Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability. BMC Systems Biology, 2008, 2, 30.	3.0	60
28	Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers. Journal of Chemical Physics, 2003, 118, 6102-6109.	3.0	56
29	Spatial confinement is a major determinant of the folding landscape of human chromosomes. Nucleic Acids Research, 2014, 42, 8223-8230.	14.5	55
30	Novel Approach to Structure-Based Pharmacophore Search Using Computational Geometry and Shape Matching Techniques. Journal of Chemical Information and Modeling, 2008, 48, 889-901.	5.4	54
31	Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins: Structure, Function and Bioinformatics, 2003, 53, 792-805.	2.6	52
32	Higher-order Interhelical Spatial Interactions in Membrane Proteins. Journal of Molecular Biology, 2003, 327, 251-272.	4.2	51
33	Challenges in structural approaches to cell modeling. Journal of Molecular Biology, 2016, 428, 2943-2964.	4.2	51
34	Structural Signatures of Enzyme Binding Pockets from Order-Independent Surface Alignment: A Study of Metalloendopeptidase and NAD Binding Proteins. Journal of Molecular Biology, 2011, 406, 713-729.	4.2	49
35	Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method. PLoS Computational Biology, 2014, 10, e1003539.	3.2	49
36	Discrete state model and accurate estimation of loop entropy of RNA secondary structures. Journal of Chemical Physics, 2008, 128, 125107.	3.0	46

#	Article	IF	CITATIONS
37	Prediction of geometrically feasible three-dimensional structures of pseudoknotted RNA through free energy estimation. Rna, 2009, 15, 2248-2263.	3.5	46
38	Measuring proteins and voids in proteins. , 0, , .		42
39	Geometric cooperativity and anticooperativity of three-body interactions in native proteins. Proteins: Structure, Function and Bioinformatics, 2005, 60, 46-65.	2.6	41
40	Predicting Three-Dimensional Structures of Transmembrane Domains of β-Barrel Membrane Proteins. Journal of the American Chemical Society, 2012, 134, 1775-1781.	13.7	41
41	Mechanism of OmpG pH-Dependent Gating from Loop Ensemble and Single Channel Studies. Journal of the American Chemical Society, 2018, 140, 1105-1115.	13.7	37
42	Statistical geometry of packing defects of lattice chain polymer from enumeration and sequential Monte Carlo method. Journal of Chemical Physics, 2002, 117, 3511-3521.	3.0	36
43	Computational studies of membrane proteins: Models and predictions for biological understanding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 927-941.	2.6	36
44	Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity. Journal of Computer Science and Technology, 2010, 25, 154-168.	1.5	35
45	Accurate Chemical Master Equation Solution Using Multi-Finite Buffers. Multiscale Modeling and Simulation, 2016, 14, 923-963.	1.6	35
46	Developing optimal non-linear scoring function for protein design. Bioinformatics, 2004, 20, 3080-3098.	4.1	33
47	Are Residues in a Protein Folding Nucleus Evolutionarily Conserved?. Journal of Molecular Biology, 2004, 335, 869-880.	4.2	33
48	Empirical potential function for simplified protein models: Combining contact and local sequence-structure descriptors. Proteins: Structure, Function and Bioinformatics, 2006, 63, 949-960.	2.6	33
49	High-resolution structure prediction of <i>β</i> -barrel membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1511-1516.	7.1	32
50	Experimental and computational studies of determinants of membrane-protein folding. Current Opinion in Chemical Biology, 2002, 6, 878-884.	6.1	31
51	The membrane–water interface region of membrane proteins: structural bias and the anti-snorkeling effect. Trends in Biochemical Sciences, 2005, 30, 355-357.	7.5	31
52	State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation. Bulletin of Mathematical Biology, 2016, 78, 617-661.	1.9	31
53	Engineered Oligomerization State of OmpF Protein through Computational Design Decouples Oligomer Dissociation from Unfolding. Journal of Molecular Biology, 2012, 419, 89-101.	4.2	28
54	Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data. Nucleic Acids Research, 2017, 45, 11547-11558.	14.5	28

#	Article	IF	CITATIONS
55	Mechanisms of Regulating Cell Topology in Proliferating Epithelia: Impact of Division Plane, Mechanical Forces, and Cell Memory. PLoS ONE, 2012, 7, e43108.	2.5	27
56	Sequence Motifs and Antimotifs in β-Barrel Membrane Proteins from a Genome-Wide Analysis: The Ala-Tyr Dichotomy and Chaperone Binding Motifs. Journal of Molecular Biology, 2006, 363, 611-623.	4.2	26
57	Topology independent protein structural alignment. BMC Bioinformatics, 2007, 8, 388.	2.6	25
58	Ionizable side chains at catalytic active sites of enzymes. European Biophysics Journal, 2012, 41, 449-460.	2.2	25
59	Folding-Degradation Relationship of a Membrane Protein Mediated by the Universally Conserved ATP-Dependent Protease FtsH. Journal of the American Chemical Society, 2018, 140, 4656-4665.	13.7	25
60	Lysine carboxylation: unveiling a spontaneous post-translational modification. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 48-57.	2.5	24
61	Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine. Journal of Cell Biology, 2019, 218, 3730-3752.	5.2	24
62	Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale. Journal of the American Chemical Society, 2016, 138, 2592-2601.	13.7	23
63	Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12453-12458.	7.1	23
64	GÎ ² promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation. Science Signaling, 2016, 9, ra38.	3.6	22
65	CHROMATIX: computing the functional landscape of many-body chromatin interactions in transcriptionally active loci from deconvolved single cells. Genome Biology, 2020, 21, 13.	8.8	22
66	Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model. PLoS Computational Biology, 2017, 13, e1005658.	3.2	22
67	Improving the Resistance of a Eukaryotic β-Barrel Protein to Thermal and Chemical Perturbations. Journal of Molecular Biology, 2011, 413, 150-161.	4.2	21
68	Adaptively biased sequential importance sampling for rare events in reaction networks with comparison to exact solutions from finite buffer dCME method. Journal of Chemical Physics, 2013, 139, 025101.	3.0	21
69	Monte Carlo sampling of near-native structures of proteins with applications. Proteins: Structure, Function and Bioinformatics, 2006, 66, 61-68.	2.6	20
70	Protein Folding Dynamics via Quantification of Kinematic Energy Landscape. Physical Review Letters, 2006, 96, 058106.	7.8	20
71	Importance of chirality and reduced flexibility of protein side chains: A study with square and tetrahedral lattice models. Journal of Chemical Physics, 2004, 121, 592.	3.0	17
72	Structural model of ïl GABA _C receptor based on evolutionary analysis: Testing of predicted protein–protein interactions involved in receptor assembly and function. Protein Science, 2009, 18, 2371-2383.	7.6	17

#	Article	IF	CITATIONS
73	Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization. Journal of the Royal Society Interface, 2017, 14, 20160959.	3.4	17
74	High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis. Nature Communications, 2021, 12, 205.	12.8	17
75	Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size. PLoS ONE, 2014, 9, e86725.	2.5	16
76	Conformational sampling and structure prediction of multiple interacting loops in soluble and <i>l²</i> -barrel membrane proteins using multi-loop distance-guided chain-growth Monte Carlo method. Bioinformatics, 2015, 31, 2646-2652.	4.1	16
77	Generating properly weighted ensemble of conformations of proteins from sparse or indirect distance constraints. Journal of Chemical Physics, 2008, 129, 094101.	3.0	15
78	Perturbation-based Markovian Transmission Model for Probing Allosteric Dynamics of Large Macromolecular Assembling: A Study of GroEL-GroES. PLoS Computational Biology, 2009, 5, e1000526.	3.2	15
79	Combinatorial Analysis for Sequence and Spatial Motif Discovery in Short Sequence Fragments. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 524-536.	3.0	15
80	The structure of the TOM core complex in the mitochondrial outer membrane. Biological Chemistry, 2020, 401, 687-697.	2.5	15
81	Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins: Structure, Function and Bioinformatics, 1998, 33, 18-29.	2.6	15
82	Prevalence of Malnutrition, Its Risk Factors, and the Use of Nutrition Support in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2022, 28, S59-S66.	1.9	15
83	Prediction of buried helices in multispan alpha helical membrane proteins. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1-5.	2.6	14
84	A model study of protein nascent chain and cotranslational folding using hydrophobicâ€polar residues. Proteins: Structure, Function and Bioinformatics, 2008, 70, 442-449.	2.6	13
85	Predicting Enzyme Functional Surfaces and Locating Key Residues Automatically from Structures. Annals of Biomedical Engineering, 2007, 35, 1037-1042.	2.5	13
86	Constrained proper sampling of conformations of transition state ensemble of protein folding. Journal of Chemical Physics, 2011, 134, 075103.	3.0	13
87	Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern. PLoS ONE, 2015, 10, e0126484.	2.5	13
88	Weakly Stable Regions and Protein-Protein Interactions in Beta-Barrel Membrane Proteins. Current Pharmaceutical Design, 2014, 20, 1268-1273.	1.9	13
89	Evolutionary Patterns of Retinal-Binding Pockets of Type I Rhodopsins and Their Functions. Photochemistry and Photobiology, 2006, 82, 1426-1435.	2.5	12
90	Cell–substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1781-1796.	2.8	11

#	Article	IF	CITATIONS
91	Hydration Structure of Antithrombin Conformers and Water Transfer during Reactive Loop Insertion. Biophysical Journal, 1998, 75, 573-582.	0.5	10
92	Accuracy of functional surfaces on comparatively modeled protein structures. Journal of Structural and Functional Genomics, 2011, 12, 97-107.	1.2	10
93	Knowledge-Based Energy Functions for Computational Studies of Proteins. , 2007, , 71-123.		9
94	GPU-accelerated Chemical Similarity Assessment for Large Scale Databases. Procedia Computer Science, 2011, 4, 2007-2016.	2.0	9
95	Exact Topology of the Dynamic Probability Surface of an Activated Process by Persistent Homology. Journal of Physical Chemistry B, 2021, 125, 4667-4680.	2.6	9
96	GPU-Based Steady-State Solution of the Chemical Master Equation. , 2013, , .		7
97	Dynamic mechanical finite element model of biological cells for studying cellular pattern formation. , 2013, 2013, 4517-20.		7
98	Three-dimensional chromosome structures from energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11991-11993.	7.1	7
99	Engineering a Novel Porin OmpGF Via Strand Replacement from Computational Analysis of Sequence Motif. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1180-1189.	2.6	7
100	A Knot Polynomial Invariant for Analysis of Topology of RNA Stems and Protein Disulfide Bonds. Computational and Mathematical Biophysics, 2017, 5, 21-30.	1.1	7
101	Discrete flux and velocity fields of probability and their global maps in reaction systems. Journal of Chemical Physics, 2018, 149, 185101.	3.0	6
102	Guest Editorial on the Special Issue on Integrating Informatics and Technology for Precision Medicine. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 12-13.	6.3	6
103	Q-Nuc: a bioinformatics pipeline for the quantitative analysis of nucleosomal profiles. Interdisciplinary Sciences, Computational Life Sciences, 2020, 12, 69-81.	3.6	6
104	Exact Probability Landscapes of Stochastic Phenotype Switching in Feed-Forward Loops: Phase Diagrams of Multimodality. Frontiers in Genetics, 2021, 12, 645640.	2.3	6
105	Interhelical Hydrogen Bonds in Transmembrane Region Are Important for Function and Stability of Ca ²⁺ -Transporting ATPase. Cell Biochemistry and Biophysics, 2003, 39, 1-12.	1.8	5
106	Stochastic probability landscape model for switching efficiency, robustness, and differential threshold for induction of genetic circuit in phage λ. , 2008, 2008, 611-4.		5
107	Alterations in Chromatin Folding Patterns in Cancer Variant-Enriched Loci. , 2019, 2019, .		5
108	Discrete and continuous models of probability flux of switching dynamics: Uncovering stochastic oscillations in a toggle-switch system. Journal of Chemical Physics, 2019, 151, 185104.	3.0	5

#	Article	IF	CITATIONS
109	GeTFEP: A general transfer free energy profile of transmembrane proteins. Protein Science, 2020, 29, 469-479.	7.6	5
110	Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins: Structure, Function and Bioinformatics, 1998, 33, 1-17.	2.6	5
111	Combinatorial model for sequence and spatial motif discovery in short sequence fragments: Examples from ß-barrel membrane proteins. , 2006, 2006, 3470-3.		4
112	Predicting and Characterizing Protein Functions Through Matching Geometric and Evolutionary Patterns of Binding Surfaces. Advances in Protein Chemistry and Structural Biology, 2008, 75, 107-141.	2.3	4
113	Computational predictions of structures of multichromosomes of budding yeast. , 2014, 2014, 3945-8.		4
114	Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells. Critical Reviews in Biomedical Engineering, 2015, 43, 323-346.	0.9	4
115	Distance-Guided Forward and Backward Chain-Growth Monte Carlo Method for Conformational Sampling and Structural Prediction of Antibody CDR-H3 Loops. Journal of Chemical Theory and Computation, 2017, 13, 380-388.	5.3	4
116	PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space. BMC Bioinformatics, 2017, 18, 24.	2.6	4
117	Minimalistic 3D chromatin models: Sparse interactions in single cells drive the chromatin fold and form many-body units. Current Opinion in Structural Biology, 2021, 71, 200-214.	5.7	4
118	Potential function of simplified protein models for discriminating native proteins from decoys: combining contact interaction and local sequence-dependent geometry. , 2004, 2004, 2976-9.		3
119	Efficient computation of transfer free energies of amino acids in beta-barrel membrane proteins. Bioinformatics, 2017, 33, 1664-1671.	4.1	3
120	On quantification of geometry and topology of protein pockets and channels for assessing mutation effects. , 2018, 2018, 263-266.		3
121	Computation of Protein Geometry and Its Applications: Packing and Function Prediction. , 2007, , 181-206.		3
122	COMPUTATIONAL DESIGN OF COMBINATORIAL PEPTIDE LIBRARY FOR MODULATING PROTEIN-PROTEIN INTERACTIONS. , 2004, , .		3
123	Nonlinear Langevin model with product stochasticity for biological networks: The case of the Schnakenberg model. Journal of Systems Science and Complexity, 2010, 23, 896-905.	2.8	2
124	On Simplified Global Nonlinear Function for Fitness Landscape: A Case Study of Inverse Protein Folding. PLoS ONE, 2014, 9, e104403.	2.5	2
125	Roles of regulated internalization in the polarization of cell surface receptors. , 2014, 2014, 1166-9.		2
126	Mechanisms of stochastic focusing and defocusing in biological reaction networks: Insight from accurate Chemical Master Equation (ACME) solutions. , 2016, 2016, 1480-1483.		2

#	Article	IF	CITATIONS
127	Structure-based Method for Predicting Deleterious Missense SNPs. , 2019, 2019, .		2
128	Modeling and simulation of cell nuclear architecture reorganization process. Journal of Computational Physics, 2022, 449, 110808.	3.8	2
129	Geometry of protein shape and its evolutionary pattern for function prediction and characterization. , 2009, 2009, 2324-7.		1
130	A general method for predicting amino acid residues experiencing hydrogen exchange. , 2018, 2018, 341-344.		1
131	Sensitivities of Regulation Intensities in Feed-Forward Loops with Multistability. , 2019, 2019, 1969-1972.		1
132	Thermodynamics of unfolding mechanisms of mouse mammary tumor virus pseudoknot from a coarse-grained loop-entropy model. Journal of Biological Physics, 2022, 48, 129-150.	1.5	1
133	Optimal nonlinear scoring function for global fitness landscape of protein design. , 2004, 2004, 2828-31.		0
134	Guest Editorial EMBC 2014. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1291-1292.	6.3	0
135	Predicting Oncogenic Missense Mutations. , 2019, 2019, .		0
136	Global Nonlinear Fitness Function for Protein Structures. Health Information Science, 2017, , 1-35.	0.4	0
137	Evolution of coagulation-fragmentation stochastic processes using accurate chemical master equation approach. Communications in Information and Systems, 2019, 19, 37-55.	0.5	0
138	Simulation of pH-Dependent, Loop-Based Membrane Protein Gating Using Pretzel. Methods in Molecular Biology, 2021, 2186, 159-169.	0.9	0
139	Inferring initial state of the ancestral network of cellular fate decision: a case study of phage lambda. , 2021, 2021, 4436-4439.		0
140	Combinatorial model for sequence and spatial motif discovery in short sequence fragments: Examples from ÄY-barrel membrane proteins. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
141	Automated method for predicting enzyme functional surfaces and locating key residues with accuracy and specificity. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0